
A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

A TWO-LEVELED MOBILE AGENT SYSTEM FOR ELECTRONIC
COMMERCE

Ozgur Koray SAHINGOZ

Air Force Academy
Computer Engineering Department

Yesilyurt, Istanbul, TURKEY
o.sahingoz@hho.edu.tr

Nadia ERDOGAN
Istanbul Technical University
Electrical-Electronics Faculty

Computer Engineering Department, Ayazaga
80626, Istanbul, TURKEY
erdogan@cs.itu.edu.tr

Abstract:

Electronic commerce technology offers the opportunity to integrate and optimize the global production and
distribution on the supply chain. Computers of various corporations, located throughout the world, communicate
with each other to determine the availability of components, to place and confirm orders, and to negotiate
delivery timescales over the Internet. Software agents help to automate a variety of tasks including those
involved in buying and selling products over large-scale networks like the Internet. This paper presents a two-
leveled mobile agent system for electronic commerce based on mobile agents, using the publish/subscribe
protocol for registration and transaction processing. In a large-scale and dynamic environment, there can be
any number of buyers and suppliers at any time. In this system, suppliers can connect, register or unregister to
the system at any time, thus preserving the dynamic structure of the system. It not only simulates real
commercial activities by buyers, agents and suppliers, but also provides an environment for parallel processing.
The latter is particularly important as more shops (sites) can be searched in real time to provide buyers with
better choices. Meanwhile, if the number of mobile agents is very large and their dispatching is processed in a
serial way, it can become a bottleneck that affects the efficiency as a whole

Keywords: E-commerce systems, Multi-level agent systems, Publish/subscribe paradigm.

1 INTRODUCTION

The number of businesses and individuals through the
world who are discovering and exploring the Internet
is growing dramatically. Through the past decades we
have seen an increasing rate of globalization of the
economy and, thereby, also of supply chains. Products
are no longer produced and consumed within the same
geographical area. Even the different parts of a
product may, and often do, come from all over the
world. This creates longer and more complex supply
chains, and therefore it changes the requirements
within supply chain management. The Internet is a
cheap, open, distributed, and easy to use environment
that provides an easy way to set up shops and conduct
commerce at any place [1].

The advances of web technologies such as the
Internet, HTML, Java and XML have greatly pushed
the development of electronic commerce. Today,
many electronic shops publish their product catalogue
on the Internet, offering a wide variety of goods. More
importantly, consumers are turning to the Internet for
such information as well as to purchase their goods.
Electronic commerce is a domain where agent
technologies are well suited. The search and retrieval
of product information is crucial in every e-commerce

system. While some systems provide the user just with
a fixed selection of products, others offer a wide
variety of products with different characteristics. In
this case, the system must provide means to efficiently
and accurately search and retrieve product information
according to the user’s desired product characteristics.

To enable the deployment of dynamic e-commerce
environments the European and the US Agentcities
initiatives [2], combined with international initiatives
in FIPA [3], aim to create a global open information-
exchange environment where dynamic services from
geographically distributed organizations can be
deployed, tested, interconnected and composed.
Examples of such dynamic services are: B2B
(Business to Business) dynamic value chain creation,
dynamic pricing through trading exchange, automatic
discovery of business partners, advertising and
marketing.

Accompanied by the growth of e-commerce, rapid
responses to changes in demand and customer
preference, and the ability to exploit new technologies
are becoming critical. As information on the Internet
becomes more dynamic and heterogeneous, ‘software
agents’ are thought of as the new building blocks for a
new Internet structure.

JOURNAL OF AERONAUTICS AND SPACE TECHNOLOGIES
JULY 2003 VOLUME 1 NUMBER 2 (21-32)

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

As pointed out by Rodrigo [4], future e-commerce
models will enhance current models by using mobile
agents. On one hand, in our real life, people can turn
to a few agents or agencies for buying something such
as an air ticket, or renting a house. They can choose a
satisfactory one from multiple plans provided. On the
other hand, the mobile agent scenario offers us more
flexibility and agent-oriented modeling capability to
apply the buyer / agent / supplier model of real
commercial activities to the building of electronic
marketplaces. In addition, it can also provide an
environment for parallel processing over distributed
sites to achieve greater efficiency.

In this paper we propose a framework for large-scale
electronic commerce system that uses the publish /
subscribe paradigm and exploits mobile agent
technology extensively. It not only supports activities
of buyers and suppliers, but also facilitates parallel
computation. The latter is especially important
because by using parallel computation more suppliers
can be searched in a shorter time to provide buyers
with better choices in their decision-making. We
present a platform that uses the publish/subscribe
mechanism for dynamic utilization of the system, and
mobile agents as mediators between buyers and
suppliers.

In a large-scale and dynamic environment, there can
be any number of buyers and suppliers at any time.
Suppliers can connect, register or unregister to the
system at any time, thus preserving the dynamic
structure of the system. The architecture that we
propose is based on the publish/subscribe paradigm
which supports many-to-many interaction of loosely
coupled entities as depicted in Figure 1. We define the
set of services that need to collaborate with the
publish/subscribe infrastructure to address the
dynamics of mobile environments.

Figure 1. Publish/Subscribe model

The rest of the paper is organized as follows. In the
next section, we present mobile agents and the mobile
computing paradigm. Section 3 describes some
significant electronic commerce systems with
references to related works. Section 4 introduces the
computational model of the two-leveled mobile agent
system. Our conclusions and directions for future
work are presented in Section 5.

2 MOBILE AGENTS

The term mobility is used to indicate a change of
location performed by the entities of a system.
Starting from simple data, the mobility has had an
evolution that has led to the movement of execution
control, code and execution environment. In the first
step of the evolution, we find the mobility of files, for
example with the FTP protocol. The next step was the
remote procedure call (RPC): in this case, the
execution flow is involved in the movement of data
between Client and Server. A client calls a remote
procedure like a local procedure by sending the
necessary parameters and receives the results, as
depicted in Figure 2.

Figure 2. Remote Procedure Call (RPC)

Even though the idea was quite simple and it extended
local procedure call, this new model had a great
impact in computer science. Then, there was the idea
to move code. A piece of program is sent to another
machine and is executed there, as shown in Figure 3.
This is called remote evaluation (REV)[5].

In the paradigm of remote evaluation, a computational
component, a client, has the know-how in order to
execute a task, but it lacks the necessary resources,
which are suited on a different site. The computational
component, therefore, sends the know-how which is
needed to fulfill the task, to a computational
component, a server, which resides on the same site as
the resource. The server executes the task using the
know-how received from client. The results of the task
are delivered back to client.

Figure 3. Remote Evaluation (REV)

In the code on demand (COD) paradigm, the
computational component, client, has local access to
the resources, but does not know how to execute the
task. Thus, it contacts a computational component,
server, on a different site, which provides the know-
how. The client loads the know-how from the server
and executes the task locally, as shown in Figure 4.

Figure 4. Code on Demand (COD)

-Broker-

Storage and
management of
subscriptions

publish()

subscribe()

unsubscribe()

Publisher

Publisher

Publisher

Publisher
Subscriber
notify()

Subscriber
notify()

Subscriber
notify()

Server Client
Get (code)

Client Server
parameters(code)

results(data)

Client Server
parameters(data)

results(data)

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

Finally, active entities became able to change the
environment where they are executing. Thus, the
natural evolution of mobility resulted in code
mobility. A particular example of mobile code is
represented by mobile agents [6]; these are software
objects, with data and code, that can be transmitted
over the net or can autonomously migrate to a remote
computer and execute automatically on arrival. An
agent is an active software entity that shows several
degrees of autonomy, since it has to take decisions and
to carry out jobs without the direct participation of the
user. A mobile agent is an autonomous entity with the
capability of roaming among nodes in a network-
aware fashion to find the needed resources and
services, as depicted in Figure 5.

Figure 5. Mobile Agent

Mobile agents are mobile, flexible, autonomous,
dynamic and efficient. When encapsulated within a
task, a mobile agent can be dispatched to a remote
host by the original host. After executing and
accomplishing its tasks at the remote host, it can bring
the results back by returning to the original host or
send them through a message. The mobile agent
approach is also suitable for deploying parallel
processes over distributed sites on the Internet. The
tasks can be decomposed and encapsulated into
multiple mobile agents. Every mobile agent can run
independently to accomplish its task. Thus, a set of
mobile agents can run in parallel on distributed hosts
so that the whole task can be completed in a shorter
time.

2.1 Kinds of Mobility

Mobile agents have been advertised as an emerging
technology/paradigm that provides means to design
and maintain distributed systems more easily. Three
kinds of mobility have been identified [7,8]:

• weak mobility: the dynamic linking of code
arriving from a different site. Most of Java
based agent systems like Aglet[9] and
Mole[6] are weak mobile.

• strong mobility: the movement of the code
and of the execution state of a thread to a
different site and the resumption of its
execution on arrival. Systems such as
Telescript [10] provide strong mobility by
using a dedicated language interpreter to

capture and resume the process’ execution
state.

• full mobility: the movement of the whole
state of the running program including all
thread’s stacks, namespaces and other
resources. This is a generalization of strong
mobility where migration is completely
transparent. Full mobility is provided by
LOCUS distributed operating system [11].
Full mobility is necessary if process
migration is used, for instance, in load
balancing where migration has to be
completely transparent.

2.2 Mobile Agent Models

Mobile agent models can be classified into five groups
[12]; Itinerary Agent, Shuttle Agent, Serial Agent,
Virtual Parallel Agent and Serial Parallel Agent.

In the first model, an itinerary agent is created by the
master consumer-agent with the addresses of a list of
targets. It migrates and visits all targets on its list one
by one. When migrating to the next target, it carries
the data accumulated from all previous targets
including the current one. After it has visited all the
targets, it returns to the consumer and carries back the
whole data.

Similarly, in the Shuttle Agent model, there is a
master consumer-agent and a single worker agent. The
worker agent is dispatched to a target in the list
maintained by the master consumer-agent. When it
has read the data, it returns to the upper-level agent,
carrying the results. After sending the data to the
master consumer-agent, it migrates to the next target,
repeats the process until it has visited all targets, and
returns all the data.

In the third model, similar to the second one, the
master consumer-agent dispatches a worker agent to a
target. When the worker agent obtains the data, it
sends it back by a message and then destroys itself.
Having gotten the result, the master consumer-agent
will dispatch a new worker agent to the next target
until all targets are visited.

In the Virtual Parallel Agent model, the master
consumer-agent is created at the client end and it starts
multiple threads. Each thread locally reads data
located in a remote HTTP server. The thread stops
when it has finished reading the data and has acquired
the results. This model resembles to virtually parallel
searching activities in a more efficient way.
Obviously, in this model, no worker agent is
dispatched.

The fifth model benefits from the parallel data access.
In this model, the master consumer-agent dispatches
multiple worker consumer-agents one by one to all

Client Server

Client
Program

Server
Program

Client Server

Client
Program

Server
Program

Mobile
Agent

code+data+context

result

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

targets that should be visited. These worker agents can
access local data in parallel and send their results to
the master consumer-agent in succession, but the
dispatch process is serial.

2.3 Mobility Support in Java

Java programming language is strongly network-
oriented and provides support for the mobility of code,
in the form of the dynamic class loading and applets.
In addition, it permits to implement a form of weak
mobility by serializing objects and sending them to
another JVM via sockets or Remote Method
Invocation. The serialization mechanism allows
maintaining the values of the instance variables, but it
cannot keep track of the execution flow. Several weak
mobility systems based on Java have been
implemented, both by academic researchers and by
enterprises. When the serialized object arrives at the
destination JVM, it is de-serialized and is reactivated
by invoking a specified method. The choice of that
method may vary from different mobile agent
systems: for example, it can be the run method or the
agent can specify it as a parameter of the go statement.

Java-based mobile agent systems realize an agent by
using one or more threads. As the official JVM from
SUN does not support a strong kind of agent mobility,
to implement it, the JVM code should be modified in
order to extract the Java stack and the program counter
of the thread(s) to be moved. In particular, they should
be collected and sent along with the serialized form of
the agent. With regard to the program counter, it is an
internal variable of the JVM that can be easily
accessed, transferred or restored at the destination
node with a light modification to the JVM. The main
difficulty is related to the Java stack.

Java based mobile agents inherit the computer
independent feature from Java programs and hence
provide a platform-independent integration of
heterogeneous databases and data sources.

3 ELECTRONIC COMMERCE SYSTEMS

An electronic commerce system covers any form of
computerized buying and selling, both by customers
and from company to company. These systems are
distinguished by their implementation (or lack thereof)
of the six stages of the consumer buying behavior
model [13]. These stages are need identification,
product brokering, merchant brokering, negotiation,
purchase and delivery, and product service and
evaluation. We describe several existing electronic
commerce systems below.

AuctionBot [14,15] is a well-known experimental
Internet auction server developed at the University of
Michigan. Its users can create new auctions by
choosing from a selection of auction types and
specifying its parameters. Buyers and suppliers can
then bid according to the auction’s multilateral
distributive negotiation protocols. The agents are
dispatched to, and operate at the single auction server;
they do not move from supplier to supplier.

MIT Media Lab's Kasbah [16] is an online World
Wide Web marketplace for buying and selling goods.
A user creates a buyer agent, provides it with a set of
criteria and dispatches it into the marketplace. The
criteria include price, time constraints and quantity of
merchandise desired. Users can select one of several
price decay functions for goods they are attempting to
sell. Supplier agents post their offers on a common
blackboard and wait for interested buyer agents to
establish contact. A buyer agent filters the available
offers according to the user's criteria, and then
proceeds to negotiate a deal. Both buyer and supplier
agents operate within the single marketplace server
and are dispatched by the buyer or supplier to that
server; they do not move from server to server.

The Minnesota AGent Marketplace Architecture
(MAGMA) [17] is a prototype for a virtual
marketplace targeted towards items that can be
transferred over the Internet (such as information). It
consists of Java-based trader agents (buyer and
supplier agents), an advertising server that provides a
classified advertisement service, and a bank that
provides financing support and payment options.
Independent agents can register with a relay server
that maintains unique identifiers for the agents and
routes inter-agent messages.

MAGNET (Multi AGent NEgotiation Testbed) [18] is
an experimental architecture developed at University
of Minnesota to provide support for complex agent
interactions, such as in automated multi-agent
contracting, as well as other types of negotiation
protocols. Agents in MAGNET negotiate and monitor
the execution of contracts among multiple suppliers. A
customer agent issues a Request for Quotes for
resources or services it requires. In response, some
supplier agents may offer to provide the requested
resources or services, for specified prices, over
specified periods. Once the customer agent receives
bids, it evaluates them based on cost, risk, and time
constraints, and selects the optimal set of bids that can
satisfy its goals.

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

Buyer

Supplier

Supplier

Buyer

Supplier

Supplier

Bank
DISPATCH SERVICE

(With one Broker)

Figure 6. Infrastructure of the system

eNAs (e-Negotiation Agents) [19] and FeNAs (Fuzzy
eNAs) [20] are prototypical intelligent trading agents
developed at CSIRO to autonomously negotiate
multiple terms of transactions in e-commerce trading.
The agents can engage in integrative negotiations in
the presence of limited common knowledge about
other agents’ preferences, constraints and objectives
through an iterative exchange of multi-attribute offers
and counter-offers. Fuzzy eNAs can also flexibly
negotiate with fuzzy constraints and preferences.

 The F/eNAs environment can consist of many
autonomous trading agents representing buyers and
suppliers that can engage in concurrent bi-lateral
negotiations according to a number of user-selected
negotiation strategies.

The work of Papastavrou and Wang showed the
advantages of applying the mobile agent approach to
parallel processing over distributed databases or data
sources [21, 22]. A mobile agent can decompose its
tasks to multiple sub-mobile agents and dispatch them
to distributed sites simultaneously in order to let them
work in parallel. Hence, mobile agent technology is
naturally suitable for deploying parallel and
distributed computation. Its performance is
comparable to, and in some sense outperforms the
current approach via expensive network and slow
network, such as the wireless network or dial-up
network.

We have developed a new model for an e-commerce
system, which is based on a two-levelled mobile agent
structure that uses the serial parallel mobile agent
model, as defined in the previous section. In the
system that we present, different from most of e-
commerce systems described above, any buyer or
supplier can easily join or leave the system using the
properties of publish/subscribe paradigm. The
computational model of the system is explained in
detail in the next section.

4. TWO-LEVELED MOBILE AGENT SYSTEM

Our work consists of a framework for a large-scale
electronic commerce system that uses the

publish/subscribe paradigm and exploits mobile agent
technology extensively. It not only supports activities
of buyers and suppliers, but also facilitates parallel
computation by running mobile agents on suppliers
concurrently. The system has an extensible
architecture, as depicted in Figure 6, and provides all
the services, which are essential to agent-based
commercial activities. Our electronic commerce
system involves three actors. Buyers are looking for
purchase services from suppliers. Suppliers or sellers
offer the services or products and a Dispatch Service
facilitates communication between buyers and
suppliers. It also includes a communication
infrastructure, transfer of goods, banking and
monetary transaction along with an economic
mechanism for brokered buyer-supplier transactions.

Figure 7. A Two-Leveled Mobile Agent Model

The system consists of mobile agents that belong to
two different levels of execution and responsibilities,
as shown in Figure 7, Broker level Mobile Agent
(BMA) and Supplier level Mobile Agents (SMA). A
BMA is created by a Buyer Agent and is sent to the
Broker. This BMA creates SMAs and sends them to
suppliers in order to search their databases, to select
among products, and to negotiate with the supplier (if
necessary). The system does not include only a single
mobile agent that visits every supplier one by one.
Instead, we send a replica of the mobile agent to each
of the suppliers concurrently, and thus make use of
parallel processing. This model of parallel
computation is especially important as more suppliers
can be searched in a shorter time to provide buyers
with better choices in their decision-making.

Broker level
Mobile Agent

B

S1

Brk

S2 S3 S4

Level 1

Level 2

Supplier level
Mobile Agents

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

B

S1

Brk

S2 S3 S4

B

S1

Brk

S2 S3 S4

B

S1

Brk

S2 S3 S4

B

S1

Brk

S2 S3 S4

reject

B

S1

Brk

S2 S3 S4

B

Brk

S

Buyer

Supplier

Broker

a. Buyer creates a Broker Level Mobile
Agent and sends it to the Broker

b. Mobile Agent creates n Supplier
Level Mobile Agents (n refers to
number of suppliers)

c. BMA sends its SMA’s to Suppliers.

d. SMA’s run in Supplier platform and
send result to BMA.

e. BMA selects a deal and sends its
decision to Suppliers and Buyer.

Figure 8. Buying a product from a Supplier in Two-Leveled Mobile Agent System

Supplier level
Mobile Agent(SMA)

Broker level
MobileAgent(BMA)

reject

O.K.

In many of e-commerce systems, a buyer (or the
system) has a fixed number of suppliers, which are
initialized with the system at start up. When a new
supplier is to be added, it has to be registered
manually by supplying its address and the necessary
parameters. In a large-scale and dynamic environment,
there can be a varying number of buyers and suppliers
at any time. In a dynamically changing electronic
marketplace, a system should have the ability to adapt
itself to this dynamic world. To meet this requirement,
we have designed an architecture that utilizes the
publish/subscribe paradigm for registration and
dispatching operations, to increase efficiency and
effectiveness of the procurement process in terms of
costs, quality, performance, and time for both buyers
and suppliers.

A user who wants to buy or sell a product creates an
agent, gives it some strategic direction, and sends it
off into a centralized agent marketplace. Mobile
agents of the system proactively visit suppliers and
negotiate with them on behalf of their owners. Each
agent’s goal is to complete an acceptable deal, subject
to a set of user-specified constraints such as a desired
price, lowest acceptable price, and a date by which to
complete the transaction.

The execution flow of the procurement process is as
the following:
a. There are some buyers and suppliers, which have

subscribed to system with their production and

services. The number of buyers and suppliers in
the system can increase or decrease at any time.

b. When a user wants to buy a product, he has to
make a request from the Buyer subsystem. A
Buyer Agent gets a request, creates a Mobile
Agent, sets its necessary instance variables and
sends it to the Broker as shown in Figure 8.a.

c. When this Mobile Agent (we call it Broker level
Mobile Agent (BMA)) arrives at the Broker, it
checks the KnowledgeBase of the Broker, selects
the suppliers, which produce the requested
products, and creates a new Supplier level Mobile
Agent (SMA) for each of the selected suppliers.
Thereafter, BMA sends each of these agents to
them, as shown in Figure 8.b and Figure 8.c.

d. Each SMA searches the product database of its
supplier, negotiates with the supplier agent and
sends results back to the BMA, as depicted in
Figure 8.d.

e. After all results are collected from the SMAs(or
the specified timeout period has expired), BMA
selects the best dealing one and sends an approval
message to this selected SMA and demands it to
buy the product and then to destroys itself. BMA
sends rejection messages to all other SMAs and
they destroy themselves. BMA also sends a
message that reports the negotiation and its result
to the Buyer Agent, as depicted in Figure 8.e.

Banking: In order for an agent-based marketplace to
become anything more than an experimental platform,
it has to be able to communicate with existing banking

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

and financial services. When an agent needs to make a
payment, it sends a request to its bank to withdraw
funds, and receive a secure wrapper, called a check.
Before sending out a check, the bank verifies the
existence of sufficient funds in the agent’s account.

We will now describe in more detail the main
components of the system, its subsystems, and explain
their functionality and discuss the major design
decisions.

4.1 Buyer Subsystem

To request a purchase order from the system, a buyer
has to initialize a Buyer Subsystem on its machine.
Buyers have to know the address (URL) of the broker
agent that they will connect, just like the URLs of well
known web sites (i.e. Yahoo!, Alta Vista or Excite).

Figure 9. Buyer Subsystem Architecture

The Buyer Subsystem consists of three main
components as shown in Figure 9.
a. A History Database, which contains result reports

of past procurements.
b. A Graphical User Interface (GUI) which is used

for interaction (i.e. getting a new procurement
process from a buyer, or searching from the
History Database) with human users.

c. A Buyer Agent, which acts on behalf of the user.

As several transaction scenarios are possible, allowing
users to generate Broker level Mobile Agents with
different behavioral characteristics increases the
flexibility of the system. A human user interacts with
the Buyer Agent via a Buyer GUI module. In the
beginning of a transaction, the user supplies the
necessary information (i.e. name, maximum price,
required quantity and required delivery date of the
product etc.). The buyer GUI allows users to control
and monitor the progress of transactions, and to query
past transactions from the History Database.

Buyer Agent is the main process of the Buyer
subsystem. Buyer Agent is a stationary agent that is
created during the initialization step of the subsystem.
It is responsible for offering an interface to end users
for inputting query tasks and communicates with the
Broker level Mobile Agents it creates to accomplish
its task.

Buyer Agent is created with the basic capability to
perform routine and simple tasks. Tasks that are more
complicated may involve human instructions but once
instructed, the agents cache them for future use. This
can be achieved by using learning methodologies on
Buyer Agent. The function of a Buyer Agent is to
search for product information and to perform goods
or services acquisition. When a buyer agent receives a
purchase request from a user, it creates a Mobile Agent
to search for product information and to perform
goods or services acquisition in the system. Buyer
Agent specifies the criteria for the acquisition of the
product and dispatches the BMA to the broker. When
this BMA reaches the best deal, it sends a result
report to Buyer Agent and this information is added
to the History Database.

To generate a Buyer Agent in the Buyer subsystem,
the Int_Buyer interface shown in Figure 10 has to be
implemented to provide uniformity and scalability.

public interface Int_Buyer extends Remote
{
public byte[] downloadClass(String file_name)

throws RemoteException;
// For Downloading necessary class by Broker

public void notify(ResultReport res_rep)

throws RemoteException;
// For getting result reports from the BMAs
}

Figure 10. Source code of Int_Buyer interface

There are two methods in the interface. The
“downloadClass” method is used to download the
classes necessary for the execution of Broker level
Mobile Agent (BMA) and/or Supplier level Mobile
Agent (SMA). As we can only use the dynamic class
loading feature of Java RMI, sometimes we need to
use these classes on the local machine (i.e. our agent
can use a different object in its execution,S if we want
to send this agent to another supplier). The “notify”
method is used to get Result Reports from BMA.

public interface Int_BMAgent extends Remote
{
public void run() throws RemoteException;
//Get published data (request) from the Buyer Agent

public String getName() throws RemoteException;
//Gets subscription information from the Suppliers

public String getOwner() throws RemoteException;
//Gets unsubscribe request from Suppliers

public String[] getClassNames()

throws RemoteException;
//For Downloading necessary class from Suppliers

public ResultSet searchKBase(String sql)

throws RemoteException;
//For Downloading necessary class from Suppliers
}

Figure 11. Source code of Int_BMAgent interface

To create a BMA Buyer Agent has to implement the
Int_BMAgent interface, as depicted in Figure 11.

Buyer
GUI

Buyer
Agent

notify

Publish
BMA

History
Database

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

BMA also implements a “Runnable” interface.
Therefore, we can run it as a “thread”, concurrently
with other BMAs and Broker Manager processes. In
the “run” method, Buyer Agent has to define the task
of the BMA and how it can perform this task. The
“getName” method returns the unique name of the
BMA and “getOwner” method returns the address of
the (Owner) Buyer Agent. The “getClassNames”
method returns the necessary class names, which
should be loaded by Broker Agent and/or Supplier
Agent. These classes are loaded through a call to the
“downloadClass” method of Buyer Agent. The
“searchKBase” method is used for selection of
Suppliers from the KnowledgeBase of the Broker.

4.2 Supplier Subsystem

A supplier has to initialize a Supplier Subsystem on its
machine to join the system. When a supplier system is
created for the first time, it subscribes to the system
providing its address and the names of its products. If
a supplier starts or ends delivering a product, it again
subscribes or unsubscribes its productS respectively.

Every supplier agent has to know the address of the
Broker so that it can make a connection. Supplier
agent subscribes to the broker by sending its product
definitions and waits for buyers to make requests for
his products.

Figure 12. Supplier Subsystem Architecture

The Supplier Subsystem includes five main
components as shown in Figure 12.
a. Product Database contains the services and

product details of the supplier.
b. Graphical User Interface (GUI) which is used for

interaction (i.e. inquiring about past and current
transactions from the agent, or a user may also
specify selling strategies through this module)
with human users.

c. Mobile Agent Manager controls and coordinates
the incoming SMAs.

d. Class Loader downloads the necessary classes
from the Broker.

e. Supplier Agent acts on behalf of the user.

Supplier Agent is a stationary agent, which is
responsible for offering an interface to end users to
enter information, control the operations, and input
query tasks. Supplier Agent processes purchase orders
from buyer agents and decides how to execute
transactions according to selling strategies specified
by the user. Since organizations differ in the products
they sell, a supplier agent should be customized before
it is placed online.

public interface Int_Supplier extends Remote
{
public void Notify(SMAgent sma)

throws RemoteException;
// For getting notification(Supplier Mobile Agent)
// from a Broker level Mobile Agent
}

Figure 13. Source code of Int_Supplier interface

Supplier Agent implements the Int_Supplier interface
depicted in Figure 13, which contains a single method
used for getting SMAs from the Broker.

Each SMA on the supplier side can read access the
Product Database according to its interests. It
determines whether the required quantity is already in
the inventory and thus available to offer, and then
makes negotiations (if necessary). If so, the supplier
agent gives an immediate quotation to the BMA and
sends a result message.

If a BMA cancels a reservation, the supplier agent
may impose a reservation fee for the quantities of
reservation reserved and bill to the buyer agent.
Cancellation penalties discourage competitors from
making malicious reservations that freeze stock.
Because the buyer's mobile agents are fast,
reservations are typically held for a short time and
therefore reservation fees should be negligibly small.

4.3 Dispatch Service

The Dispatch Service plays an important role in
cyberspace. It is a logically (also physically in our
system) centralized party which mediates between
buyers and suppliers in a marketplace. The main
component of the Dispatch Service is the “broker”.
Broker is useful when a marketplace has a number of
buyers and suppliers, when the search cost is
relatively high or when trust services are necessary.
The inner structure of Broker is shown in Figure 14.

The client-server paradigm is often not sufficient to
solve satisfactorily the problems that may arise during
the system life cycle. Often one wants to add a
supplier or a buyer to the e-commerce system after its
design-time. In the system that we present, the broker
implements the publish/subscribe paradigm in which
purchase events are published and made available to
the supplier components of the system through
notifications.

notify Supplier
Agent

Mobile
Agent

Manager *
*
*

Class Loader

Supplier
GUI

Mobile Agents

Loads
Classes

Confirm
and

Cancel
Messages

Product
Database

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

 Class

Loader

Notification
Manager

Publish
Manager

Knowledge
Table

Subscription
Manager

BROKER
AGENT

BMAs
 * * *

* * *

SMA
Dispatcher

Result
Manager

unsubscribe

subscribe

getResult

Sends Supplier
Mobile Agent

Queue Manager

Class
Queue

Result
Queue

SMA
Queue

BMA
Queue

Subscription
Table

KnowledgeBase Manager

publish

Sends Decision
to Buyer

Downloading
necessary

classes from
Buyer

Figure 14. Inner structure of the Broker

Accept/Reject
to SMAs

Decision
Queue

Two important tables can be manipulated by
KnowledgeBase Manager of the Broker.
a. Knowledge Table keeps statistical information

about suppliers, buyers and products in the
system, according to message transactions
between buyer and supplier agents.

b. Subscription Table keeps simple information,
such as names of services or products which are
delivered by suppliers. It also contains supplier id
and password pairs for authorization of suppliers.

The Queue Manager has access to five major queues
in the Broker. These queues are used for execution of
manager modules concurrently.
a. Class Queue contains the names and addresses of

the classes that are required to be downloaded by
the BMAs.

b. BMA Queue contains the serialized form of
incoming BMAs from Buyers.

c. SMA Queue contains the serialized form of
outgoing SMAs to Suppliers

d. Result Queue contains incoming results from the
SMAs.

e. Decision Queue contains the decision data of a
BMA, that is to be sent to Buyer Agent.

The broker consists of seven manager modules, which
run in parallel in the system. These are Class Loader,
Publish Manager, Notification Manager, Subscription
Manager, SMA Dispatcher, Result Manager and
Broker Agent. The tasks of these managers and the
execution flow of a procurement process in the Broker
is as follows:
a. Subscription Manager gets subscription messages

from suppliers via subscribe and unsubscribe
methods, verifies their supplier_id and passwords
with the Subscription Table, and continues with
the necessary actions.

b. Publish Manager receives the serialized forms of
incoming BMAs from the Buyer Agent via

publish method and adds them to the BMA
Queue. It also gets names and addresses of the
necessary class via the same method and adds
them to the Class Queue.

c. Class Loader downloads classes in the Class
Queue from Buyer Subsystem through a call to
the “downloadClass” method of the Buyer Agent.

d. Broker Agent creates and activates a thread for
each BMA in the BMA Queue.

e. Each BMA has the authority to read and write
both Knowledge Table and Subscription Table. A
BMA searches the suppliers’ information in these
tables, then creates a SMA for each supplier and
thereafter puts the serialized form of each SMA
into the SMA Queue.

f. SMA Dispatcher sends each SMA in the SMA
Queue to its target supplier.

g. Each SMA returns the result of its search and
negotiation activity to the Broker via getResult
method. These results are received by Result
Manager and inserted into the Result Queue.

h. BMAs examine the results in the Result Queue
carefully and make a decision. After reaching a
decision, a BMA creates a decision report and
puts it into the Decision Queue.

i. Notification Manager Sends each decision in the
Decision Queue to its target Buyer.

Broker Agent is the main component of Dispatch
System. It has control over all operations in the
system. It evaluates an incoming message and
generates lists of target suppliers by using the
information in Knowledge Table and Subscription
Table.

Broker agent provides a platform for incoming mobile
agents to run and create SMAs and dispatching them
to the necessary suppliers. It also supports the
registering and dispatching operations in accordance
with publish/subscribe paradigm.

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

public interface Int_Broker extends Remote
{
public void publish(String address, SMAgent sma,
 String[] classNames) throws RemoteException;
//Get published data (request) from the Buyer Agent

public void subscribe(String sup_address,

String sup_id, String pass,
Subscription sub) throws RemoteException;

//Gets subscription information from the Suppliers

public void unsubscribe(String sup_id, String pass,

Subscription sub) throws RemoteException;
//Gets unsubscribe request from Suppliers

public byte[] downloadClass(String file_name)

throws RemoteException;
//For Downloading necessary classes for Suppliers
}

Figure 15. Source code of Int_Broker interface

A Broker Agent has to implement Int_Broker
interface depicted in Figure 15. There are four main
methods in the Int_Broker interface. The “publish”
method is used to get Broker level Mobile Agent from
Buyer agent with address of Buyer Agent. The
“subscribe” method is used for subscription of
Suppliers with address, unique supplier id, password
and subscription (contains product definitions)
information. “unsubscribe” method is used for
unsubscription operation of the suppliers with supplier
id, password and subscription information. The
“downloadClass” method is used to download classes
necessary for execution of Supplier level Mobile
Agent.

public interface Int_SMAgent extends Remote
{
public void run() throws RemoteException;
//Get published data (request) from the Buyer Agent

public String[] getClassNames()

throws RemoteException;
//Gets subscription information from the Suppliers

public ResultSet searchProductDB(String sql)

throws RemoteException;
// Gets unsubscribe request from Suppliers
}

Figure 16. Source code of Int_SMAgent interface

SMAs are created by BMAs in the Broker side of the
system. To create a SMA, a BMA has to implement
the Int_SMAgent interface, depicted in Figure 16.
SMA implements a “Runnable” interface therefore we
can run it as a “thread”, concurrently with Supplier
Manager processes. In the “run” method, BMA has to
define the function of BMA and how it can perform
this task. The “getClassNames” method returns the
necessary class names, which should be downloaded
by Supplier Agent. These classes are downloaded by
calling the “downloadClass” of the Broker Agent. The
“searchProductDB” method is used to select products
from the Product Database of the Supplier. Our
system includes only one Broker. It is possible to
enhance the system by allowing several Brokers to be
present (after some minor modifications in he Broker
Agent structure), connecting them with different

topologies and thus increase the scalability of the
system. This approach is included in our current
studies.

4.4 Stages of a Mobile Agent

When a mobile agent (Broker level Mobile Agent or
Supplier level Mobile Agent) is sent to a remote host
to accomplish a specified task, the whole process can
typically be decomposed as follows:

4.4.1. Distributing Agents.

In this stage, the master agent (Buyer Agent or Broker
level Mobile Agent) should first create the mobile
agent (BMA or SMA) which will be sent. During its
creating process, some arguments and behavioural
parameters are encapsulated into the mobile agent,
including its task and the address of the master agent
to return the results. The code for accomplishing the
task should also be included in the mobile agent. After
the mobile agent has been created, the master agent
will dispatch it to the remote host (broker or supplier)
by using RMI messaging. Generally, the time for this
stage depends on the bandwidth, traffic state of the
network, the size of the mobile agent. The dispatch
process is mainly a network-dependent job.

4.4.2. Completing tasks.

If the dispatched mobile agent successfully reaches the
remote host, it begins to execute and to access local
data to accomplish its task. Due to the characteristics
of the task, the mobile agent can communicate with
local stationary agents, such as Broker Agent or
Supplier Agent, or access local data, such as files or
database, directly.

Since the mobile agent approach is well suitable for
deploying parallel processing over distributed data
resources, a mobile agent can be assigned a simple
task so that it has a small size and can visit only one
remote host to accomplish its task. A mobile agent can
also be assigned a set of tasks that should be
accomplished by visiting a set of remote hosts. If these
tasks are semantically dependent and should only be
finished in a specific order, dispatching one mobile
agent is essential and good enough that it can migrate
in an itinerary pattern. Otherwise, if these tasks are
semantically independent and the number of remote
hosts that should be visited is large, these tasks should
be distributed to multiple mobile agents so that each
mobile agent has only one relatively simple task that it
will not take a long time to accomplish it. Thus, the
master agent can get all the results in a short time
since these dispatched agents can execute in parallel
over different processors. In this case, as in our system
the end user can easily get a large set of quotations for
his/her desired products in a very short time.

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

4.4.3. Reporting Results.

When a BMA or SMA has accomplished its task, it
should return the results. It can either dispatch itself to
the origin host carrying its results or send the results
back through a message. The latter way can be faster
since the former way should send back both the results
and the code of the mobile agent. Therefore we prefer
the second one. This approach is necessary when the
network is partially connected or the connection is
dynamically changed, where the autonomous
migration of a mobile agent can help to choose
different route for returning.

5 Conclusions and Directions for Future Work

In this paper, we have introduced a general framework
for a Two-Leveled Mobile Agent based E- Commerce

systems including mechanism for a communication
infrastructure based on publish/subscribe paradigm.
The system relies on the utilization of mobile agents
as mediators between buyers and suppliers. The
publish/subscribe protocol allows participants to join
and leave the system dynamically, extending the
flexibility and adaptability of the system. By using a
two-leveled agent model, we have also made use
parallel computation to enhance performance. This is
especially important as a larger number of suppliers
can be searched concurrently in a shorter time to
provide buyers with better choices in their decision-
making. As future work, we have plans to change the
API to conform to a standard Agent Communication
Language (ACL) like KQML[23] or FIPA ACL[3].

References

[1] Guanghao Yan, Wee-Keong Ng and Ee-Peng Lim.

Toolkits for a Distributed, Agent Based Web
Commerce System, In Proceedings of the International
IFIP Working Conference on Trends in Distributed
Systems for Electronic Commerce (TrEC '98),
Hamburg, Germany, July 1998.

[2] Agentcities Web, http://www.agentcities.org.
[3] Foundation for Intelligent Physical Agents,

http://www.fipa.org.
[4] T. D. Rodrigo and A. Stanski, “The evolving future of

agent-based electronic commerce,” in Electronic
Commerce: Opportunity and Challenges, eds. S.M.
Rahman and M. S. Raisinghani, Idea Group Publishing:
Hershey, USA, 2000, pp. 337–351.

[5] James W. Stamos and David K. Gifford. Remote
Evaluation. ACM Transaction on Programming
Languages and Systems, 14(4):537-565, October 1990

[6] J. Baumann, F. Hohl, K. Rothermel and M. Straber,
Mole - Concepts of a Mobile Agent System. The World
Wide Web Journal, 1, 3, pp 123-137, 1998

[7] G. Cugola, C. Ghezzi, G. Picco, G. Vigna, "Analyzing
Mobile Code Languages", Mobile Object Systems,
Lecture Notes in Computer Science, No. 1222,
Springer-Verlag (D), pp. 94-109, February 1997.

[8] M. Hohlfeld and B. Yee. How to Migrate Agents.
Available at http://www.cs.ucsd.edu/~bsy

[9] Lange, D.; Oshima, M.: "Mobile Agents with Java: The
Aglet API." In "Special issue on Distributed World
Wide Web Processing: Applications and Techniques of
Web Agents." Baltzer Science Publishers, 1998.

[10] J.E.White. Telescript Technology.: The Foundation for
the Electronic Marketplace. White paper, General
Magic, Inc., Mountain View, CA, 1994

[11] B. Walker, G. Popek, R. English, C. Kline, and G.
Thiel. The LOCUS distributed operating system.
Proceedings Ninth Symposium on Operating Systems
Principles, Bretton Woods, New Hampshire, October
1983, pages 49-70.

[12] Y. Wang and K. L. Tan. "A Study of Building Internet
Marketplaces on the Basis of Mobile Agents for
Parallel Processing", World Wide Web: Internet and
Web Information Systems, 5, 41–66, 2002

[13] R. Guttman, A. Moukas and P. Maes, “Agent-mediated
electronic commerce: A survey," Knowledge
Engineering Review, vol. 13, no. 2 (June 1998) 147-
159.

[14] AuctionBot URL : http://auction.eecs.umich.edu.
[15] P. R. Wurman, M. P. Wellman and W. E. Walsh, "The

Michigan Internet AuctionBot: A configurable auction
server for human and software agents," Proceedings of
the Second International Conference on Autonomous
Agents, Minneapolis, MN (May 1998), pp. 01-308.

[16] A. Chavez and P. Maes, “Kasbah: An agent
marketplace for buying and selling goods," Proceedings
of the First International Conference on the Practical
Application of Intelligent Agents and Multi-Agent
Technology, London, UK (April 1996), pp. 75-90.

[17] M. Tsvetovatyy, B. Mobasher, M. Gini and Z.
Wieckowski, "MAGMA: An agent-based virtual
market for electronic commerce," Applied Artificial
Intelligence, vol. 11, no. 6 (September 1997), pp. 501-
523.

[18] MAGNET: Mobile Agents for Networked Electronic
Trading. http://alpha.ece.ucsb.edu/ ~pdg/magnet/

[19] Kowalczyk R. and Bui V. “On Constraint-based
Reasoning in e-Negotiation Agents”. In F. Dignum and
U. Cortes (Eds.) Agent Mediated Electronic Commerce
III, LNAI (2000), Springer-Verlag, pp. 31-46.

[20] Ryszard Kowalczyk, Van Anh Bui (2000). “On Fuzzy
e-Negotiation Agents: Autonomous negotiation with
incomplete and imprecise information”. DEXA
Workshop on e-Negotiation, UK, 2000.

[21] S. Papastavrou, G. Samaras, and E. Pitoura, “Mobile
agents for WWW distributed database access,” in
Proceedings of 15th International Conference on Data
Engineering (ICDE’99), Sydney, Australia, March 23–
26, 1999, pp. 228–237.

[22] Y. Wang, K. C. K. Law, and K. L. Tan, “A mobile
agent based protocol for distributed databases access,”
in Proceedings of 2000 IEEE International Conference
on Systems, Man, and Cybernetics (SMC’2000),
Nashville, TN, 8–11 October 2000, pp. 2028–2033.

[23] Finn, T., Labrou, Y. and Mayfield, J. “KQML as an
agent communication language. In: Software Agents.”

[24] Bradshaw, J. (Ed.) AAAI Press/MIT Press. ISBN 0-
262-52234-9 (1997).

A Two-Leveled Mobile Agent System for Electronic Commerce

SAHINGOZ, ERDOGAN

BIOGRAPHY

Ozgur Koray SAHINGOZ

Ozgur Koray SAHINGOZ is a Research Assistant
in Computer Engineering Department of Air Force
Academy, Istanbul. He received BSc degree from
Computer Engineering Department of Bosphorus
University, Istanbul, and MSc degree from
Computer Engineering Department of Istanbul
Technical University, where he is currently
working for his PhD degree. His research interests
lie in the areas of object oriented programming,
artificial intelligence, parallel and distributed
computation, and e-commerce.

Nadia ERDOGAN

Nadia ERDOGAN is an associate professor at
Computer Engineering Department of Istanbul
Technical University. She received BSc and MSc
degrees from Electrical Engineering and Computer
Engineering Departments of Bosphorus University,
Istanbul, respectively, and PhD degree from
Computer Engineering Department of Istanbul
Technical University. Her current research
interests are in the areas of parallel and distributed
systems, parallel programming, object oriented
programming and distributed multi-agent systems.

