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ABSTRACT 
 
Euler equations are solved by means of three efficient and robust finite volume schemes, namely, central scheme 
of Jameson-Schmidt-Turkel (JST) and upwind schemes of Roe’s Approximate Riemann Solver and Convective 
Upwind Split Pressure (CUSP) Scheme. Cell-centered discretization technique is employed. Multistage time-
stepping algorithm is used to advance the solution in time. Acceleration techniques including local time stepping 
and implicit residual smoothing are applied for faster convergence to steady state. The flux at the cell faces is 
computed using MUSCL approach in upwind schemes and simple averaging procedure in JST scheme. MUSCL 
is enhanced by employing Van Albada limiter to suppress oscillations in regions of sharp gradients. Attention is 
directed towards the accuracy, convergence, and computational performance of the schemes. All schemes yield 
good convergence rates for a wide range of flow speeds.  
 
Keywords:  Euler Equations, Central and Upwind Schemes, Multistage Time-stepping, Acceleration Techniques, 
MUSCL Approach. 
 
 
 
1. INTRODUCTION: 
 
Computational Fluid Dynamics (CFD) has been 
accepted as an efficient tool in mechanical and 
aeronautical engineering community and design 
engineers are running various CFD codes in order to 
predict the performance of their designs. Due to being 
an active player on the scene of engineering design, 
the strong need grows to assess the accuracy and 
efficiency of the CFD algorithms for inviscid and 
viscous flows.  
 
Navier-Stokes equations govern the flows of viscous, 
heat-conducting fluids. In the limit of vanishing 
dissipation terms ( ∞→Re ), Euler equations governing 
the flows of inviscid, adiabatic fluids are resulted. Due 
to exclusion of the diffusive effects, the applicability 
of the Euler equations for real flow simulations is 
limited. However, the dominating convective 
character of most flow situations at high Reynolds 
numbers advocates the importance of their accurate 
numerical simulation. Most methods used for 
discretization of convective part of the Navier-Stokes 
equations are same as the methods based on Euler 
equations. Also, the difficulties with discretization and 
solution procedure regarding the non-linear convective 
terms, are kept in Euler equations. Hence, 
development of an Euler solver is of great importance 

for the construction of a Navier-Stokes solver. 
Solutions of Euler equations are needed for various 
reasons such as for providing unique shock solutions 
for flows in converging-diverging ducts, for 
determining the rotational flowfield behind a shock 
past a wing or nacelle, etc. With its current position, 
Euler solvers are widely used in a variety of 
applications for flows with complex geometries. 
 
In the current work, two dimensional Euler solver 
based on cell-centered finite volume discretization 
technique was studied. Use of conservation form of 
the governing equation in finite volume discretization 
technique allows the shock waves to be captured as 
weak solutions to the governing equations and 
application of shock-fitting techniques is not needed 
further. Convective terms were evaluated using central 
scheme of JST [1], and upwind schemes of Roe’s 
approximate Riemann solver [2] and CUSP scheme 
[3]. Upwind schemes, in which discretization is based 
on the characteristics of Euler equations, have the 
advantage of being naturally dissipative. Separate 
dissipation terms are added in central schemes to 
overcome oscillations arising in regions of strong 
gradients. An explicit second-order accurate upwind 
scheme can also have twice the stability bound of a 
second-order scheme [4]. In the cell-centered scheme, 
the flow variables are located at the cell centers. The 
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flux vectors at the midpoint of a cell face are 
computed by simple averaging of flow variables at 
two neighboring cells in central scheme whereas two 
flow variables named “the left and the right state,” 
which are interpolated from left and right side of the 
cell face using a non-symmetric formulae are utilized 
in upwind schemes. A famous choice for interpolation, 
which is known as Monotone Upwind Schemes for 
Scalar Conservation Laws (MUSCL) was used [5]. 
MUSCL was enhanced by using Van Albada Limiter 
[6] in order to suppress the non-physical oscillations 
of the solution near the regions of strong flow 
gradients. Time integration to steady state was done 
by using five stage hybrid schemes, in which 
dissipation terms can be evaluated at odd stages only 
to decrease the computational work and are blended to 
increase the stability of the scheme. However, the 
convergence of the basic scheme slows down 
considerably due to time step limitation associated 
with the small mesh cells. This disadvantage was 
overcome by applying two acceleration techniques 
such as local time-stepping and implicit residual 
smoothing. 
 
2. GOVERNING EQUATIONS: 
 
The integral form of the Navier-Stokes equations can 
be written as 
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with the contravariant velocity V defined as  
vnunnvV yx +=⋅=

rr
. (3) 

For flows of inviscid, adiabatic fluids, 0=VF
r

, and 
Euler equations are resulted. Source terms are 
assumed to be negligible 0≈Q

r
. The total enthalpy H 

is computed as 
2

2
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= + = +

r
 (4) 

Assuming air as an ideal gas, pressure reads 
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and temperature is computed using equation of state. 

 
3. SPATIAL DISCRETIZATION: 
 
Discretization of the Euler equations in integral form 
is obtained by subdividing the computational domain 
Ω  into separate hexahedral finite volumes ijkΩ  (i = 
1,2,…,Ni, and j = 1,2,…, Nj) and by requiring the 
conservation laws for each finite volume separately. 
For a particular 2D control volume whose volume 
does not change with time, equation (1) becomes 
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I, J address the particular control volume and NF 
denotes the number of control volume faces. mS∆  
denotes the area of the face m. After writing the 
equation (6) for all control volumes, a system of ODE 
of first order (which can be solved by advancing in 
time starting from a known initial solution and 
providing suitable BC’s for inviscid fluxes) is 
obtained. Steady solution can be reached iteratively: 
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 is called the “residual”. The finite volume 

discretization requires an evaluation of the convective 
fluxes at each cell face. In this work, convective fluxes 
are evaluated using central scheme of JST [1], and 
upwind schemes of Roe’s approximate Riemann 
solver [2], and CUSP scheme [3]. 
 
Jameson-Schmidt-Turkel (JST) Scheme: 
 
In this scheme, convective flux at the cell faces was 
computed from the arithmetic average of the 
conservative variables on both sides of the face. 
However, it allows for odd-even decoupling of the 
solution and overshoots at shocks. These drawbacks 
were overcome by adding artificial dissipation for 
stability. This scheme is first implemented for Euler 
equations by Jameson et al. [1]. It is less accurate in 
the resolution of boundary layers and shocks in 
comparison to upwind schemes. However, it is 
computationally cheaper. Total convective flux at cell 
face reads 
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The dissipation ( )21+ID
r

 is scaled by the sum of the 
spectral radii of the convective flux Jacobians: 
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where ( ) ScVc ∆+=Λ̂ . V is the contravariant velocity 
and c is the speed of sound. The coefficients are 
computed as  
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21)2( =k  and 6411281 )4( ≤≤ k  are typical values. 
 
Roe’s Approximate Riemann Solver: 
 
Roe approximate Riemann solver is based on the 
decomposition of the flux difference over a face of the 
control volume into a sum of wave contributions. Not 
only the direction of wave propagation, but also the 
waves themselves are considered. The convective 
fluxes at the face of a control volume from the left and 
right state are evaluated by solving the Riemann 
problem. The idea was first introduced by Godunov 
[7]. Since the Euler equations are non-linear, the 
corresponding Riemann problem is non-linear as well. 
This can be expensive to calculate in some cases, and 
Roe [2] found out that a properly selected approximate 
problem does the same job as well and reduces the 
computational effort considerably. Roe’s method is 
popular due to its high accuracy for boundary layers 
and good resolution of shocks. Total convective flux 
at the face of a control volume reads [2, 8] 
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The jump condition is defined as ( ) ( ) ( )LR •−•=•∆ . 
The original scheme does not recognise the sonic 
point. This problem was overcome by modifying the 
modulus of the eigenvalues cVc

~~ ±=Λ  using 

Harten’s entropy correction [9]. 
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where )10/~(cO≈δ . 
 
Convective Upwind Split Pressure Scheme: 
 
This scheme was introduced by Jameson [3, 10, and 
11] and modified by Tatsumi, Martinelli, and Jameson 
[12]. It belongs to a family of schemes based on a 
splitting of the flux vector into convective and 
pressure flux contributions. The CUSP scheme has 
several advantages. First, it can be considered as a 
type of artificial viscosity, since it is defined as a sum 
of the central flux average plus a dissipative flux. 
Hence, it can be used with a various time-stepping 
schemes. Second, the CUSP formulation can be used 
with multistage schemes which do not evaluate the 
artificial dissipation fluxes at every stage, in order to 
reduce computational work. Another advantage of the 
CUSP scheme is that it can be easily combined with 
preconditioning, since preconditioning is based on the 
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inviscid flux form and not the artificial dissipation. 
The CUSP scheme is specifically developed for 
oscillation-free, single-interior-point shock capturing, 
and also provides low dissipation for low Mach 
numbers. Total convective flux at the face of a control 
volume is computed as 
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The dissipation term includes a linear combination of 
the differences of the state and the flux vector. 
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The above formulation is called HCUSP scheme, 
since the total enthalpy is preserved [13]. The two 
parameters *α  and β  are defined as 
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where cVM n
~~=  and the positive and negative 

eigenvalues are given as 
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where V~  is the contravariant velocity, γ  is the 
specific heat coefficient, and c~  is the speed of sound. 
All flow variables in equations 18-20 are obtained at 
the cell faces using Roe averages [2, 8].  
 
In upwind schemes, left and right states are evaluated 
using MUSCL approach [5], which reads 
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In the above formulations, Φ  is slope limiter and Ψ  
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The parameter ε  prevents the activation of the limiter 
in smooth flow regions due to small scale oscillations 
[14]. 
 
4. TEMPORAL DISCRETIZATION: 
 
For steady problems with cell-centered discretization, 
basic explicit scheme is written as 

n
I

I

In
I RtW

rr

Ω
∆

−=∆  (26) 

For five stage hybrid scheme, where the dissipative 
terms are evaluated at odd stages, the spatial 
discretization is split into two parts 
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Table 1 presents stage coefficients mα and blending 
coefficients mβ  for central and upwind schemes in 
case of (5-3) hybrid scheme. 
 
The basic explicit time-stepping scheme is further 
accelerated by local time stepping and implicit 
residual smoothing (IRS). With local time stepping, 
the solution at each cell is advanced at the maximum 

t∆  allowed by the stability. Implicit smoothing of 
residuals is used to extend the stability range of the 
basic scheme.  
 

Table 1. Hybrid Multistage scheme 

 Central scheme Upwind Scheme 
Stage α  β  α  β  

1 0.2500 1.00 0.2742 1.00 
2 0.1667 0.00 0.2067 0.00 
3 0.3750 0.56 0.5020 0.56 
4 0.5000 0.00 0.5142 0.00 
5 1.0000 0.44 1.0000 0.44 

 
Jameson and Baker [15] first introduced the residual 
smoothing technique with the aim to give the explicit 
scheme an implicit character. Maximum allowable 
CFL number is increased considerably. IRS reads  
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125.0=Ψ  is taken. The maximum ratio of the CFL 
numbers of the smoothed and unsmoothed scheme is 
dependent on the value of the smoothing coefficient, 
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+≤  (33) 

The ratios of the convective spectral radii read 
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Λ

Λ
= ˆ

ˆ  (34) 

 
 
 

5. BOUNDARY CONDITIONS: 
 
Boundary conditions were treated by using two layers 
of ghost cells, which are built by extending the 
discretization stencil beyond the computational 
boundaries. At the solid, adiabatic wall, flow tangency 
is maintained and the wall pressure is obtained by 
extrapolation from the interior domain. Symmetry 
plane is treated by using the concept of reflected cells, 
which means that flow variables in the ghost cells are 
set equal to neighboring interior cells. Inflow/outflow 
boundary conditions, which are based on the Riemann 
invariants corresponding to the incoming and outgoing 
waves, were implemented to the rest of the 
boundaries.  
 
 
6. COMPUTATIONAL RESULTS: 
 
The numerical results given here demonstrate the 
accuracy and computational efficiency of the studied 
schemes for internal flows in a channel with a circular 
bump on the lower wall. The computations with 33x9 
(coarse), 65x17 (fine), and 129x33 (finer) grid points 
were carried out to determine grid independent 
solution. Computed results agree well with the ones in 
reference [16]. Figure 1 presents the computational 
mesh, which includes 65x17 grid points, used in all 
computations. The width of the channel is equal to the 
length of the bump and the thickness-to-chord ratio of 
the bump is 10%. This geometry is identical to the test 
case used in reference [17]. For all computations, the 
flow in a channel was initially uniform having the far 
upstream properties. The solution was assumed to 
reach the steady state when the average absolute 
correction of normalized density is less than 1x10-5. 
CFL value of 2.5 is utilized. All computations were 
performed on a PC including 512 Mb memory and 2 
GHz CPU running Windows XP. 
 

 
Figure 1. Fine computational mesh. 

 
Table 2. Computational work. 

Mach Grid 
Density JST CUSP ROE 

33x9    
65x17    0.5 

129x33    
33x9    

65x17    0.675 
129x33    

1.4 65x17    
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Table 3. Computational performance (M=0.5). 

 Grid 
Density JST CUSP ROE 

33x9 52 68 48 
65x17 921 1320 1196 CPU time 

(Sec.) 129x33 7680 9490 8630 
33x9 1.3 1.4 1.4 

65x17 1.6 1.7 1.7 Memory 
(Mb.) 129x33 1.9 2.0 2.0 

 
Table 2-5 present the computational work done in this 
study. As expected, JST scheme was observed to be 
computationally cheaper than upwind schemes in all 
flow cases.  
 
 

Table 4. Computational performance (M=0.675). 

 Grid 
Density JST CUSP ROE 

33x9 14 31 29 
65x17 90 177 167 CPU time 

(Sec.) 129x33 796 1440 1400 
33x9 1.3 1.4 1.4 

65x17 1.6 1.7 1.7 Memory 
(Mb.) 129x33 1.9 2.0 2.0 

 
Table 5. Computational performance (M=1.4). 

 Grid 
Density JST CUSP ROE 

CPU time 
(Sec.) 65x17 26 85 60 

Memory 
(Mb.) 65x17 1.6 1.7 1.7 
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Figure 2. Typical convergence history, M=0.5 

 

Iteration

R
es

id
ua

l

0 500 1000 1500 2000
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

JST
CUSP
ROE

M=0.675

 
 

Figure 3. Convergence history of available schemes 
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Figure 4. Grid sensitivity, M=0.5 
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Figure 5. Grid sensitivity, M=0.675 
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Figure 6. Isomach contours for available schemes 
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Figure 7. Mach number distribution 
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Figure 8. Total pressure loss contours 
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Figure 9. Isomach contours for available schemes 
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Figure 10. Mach number distribution, M=1.4 
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Figure 11. Total pressure loss contours, M=1.4 

 
Figure 2 presents typical convergence histories for 
three grid densities. For this subsonic (M=0.5) case, 
the errors reflecting back and forth in the solution 
domain slow down the convergence. Coarsening the 
grid size allows better damping of errors, which 
results in faster convergence to steady state. Figure 3 
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presents typical convergence histories for available 
schemes for transonic (M=0.675) case. All schemes 
have similar convergence rate.  
 
Figure 4-5 present solutions for subsonic and transonic 
flow cases with three grid densities. Solid, dashed, and 
long dashed lines represent the solutions computed 
using fine, coarse, and finer grids respectively. Fine 
and finer grids yield similar solutions, which is an 
indication of grid independent solution. Figure 6 
presents the solutions computed using JST (solid line), 
CUSP (dashed line), and ROE (long dashed line) 
schemes with fine grid. The solution is quite 
symmetric about the midchord, which is a good 
indication of accuracy for the subsonic application. 
Upwind schemes yield quite similar results, which 
also agree well with that of JST scheme. In the 
solution at M=0.675, a supersonic region, which is 
terminated by shock, appears. The captured shock is 
located at around 72% of chord and it is spread over 
three grid points in JST scheme. The shocks, captured 
by upwind schemes, are similar to each other and are 
sharper in comparison to that of JST scheme (Figure 
7). The flow behind the shock is rotational and thus 
the isomach lines downstream of the shock no longer 
intersect the lower wall at right angles. Figure 8 shows 
the total pressure loss - )(0.1 ∞−−=∆ TTT ppp - 
contours for transonic case. The loss reaches to its 
maximum value at the middle shock point. The lines 
of constant loss behind the shock follow the 
streamlines, which is an expected result for an inviscid 
rotational flow.  
 
Figure 9-11 present the solutions for supersonic 
(M=1.4) case. Two oblique shocks are formed at the 
leading and trailing edge of the bump. The leading 
edge shock is dissipated by the expansion waves 
transmitted from the bump surface at the downstream. 
The shock is spread over about five grid cells at the 
symmetry plane and reflected back to the expansion 
region, where it is dissipated. The trailing edge shock 
is also dissipated by the upstream expansion waves 
and leaves the computational domain.  
 
 
7. CONCLUSION: 
 
The present two dimensional Euler solver based on 
cell-centered finite volume discretization technique 
with central scheme of JST, and upwind schemes of 
Roe’s approximate Riemann solver and CUSP scheme 
works efficiently for internal flows at subsonic, 
transonic, and supersonic speeds. For upwind 
schemes, MUSCL approach, which is enhanced by 
using Van Albada Limiter in order to suppress the 
non-physical oscillations of the solution, works well. 
The convergence of the basic explicit time stepping 
scheme is successfully accelerated by applying local 
time-stepping and implicit residual smoothing 
techniques.  

 
Numerical results agree well with that of available in 
the open literature and they indicate that present solver 
is accurate, and reliable for predicting inviscid 
rotational, and/or irrotational flows. In comparison to 
central scheme, upwind schemes are superior in 
capturing strong gradients present in the flow domain. 
However, they require more CPU time and 
computational memory. All schemes yield good 
convergence rates for a wide range of flow speeds. 
Further improvement to current solver for handling 
external flows will provide a valuable numerical tool 
for aerodynamic applications as well. Evaluation of 
diffusive fluxes will improve the reliability and 
flexibility of the solver as an engineering tool for 
handling viscous flows as well.  
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