
YILMAZ
23

COMPARISON OF SOAP BASED TECHNOLOGIES:
.NET REMOTING AND ASP.NET WEB SERVICES

Güray YILMAZ

Turkish Air Force Academy
Computer Engineering Dept.

Yeşilyurt/Istanbul
g.yilmaz@hho.edu.tr

ABSTRACT
Simple Object Access Protocol (SOAP) is a specification that enables applications to communicate with other
applications [2]. Two major design goals for SOAP are simplicity and extensibility. SOAP attempts to meet
these goals by omitting, from the messaging framework, features that are often found in distributed systems. In
addition to this, SOAP is a lightweight protocol for exchange of information in a decentralized, distributed
environment [1]. In this manner, SOAP provides reliable and robust message exchanging to such technologies,
.NET Remoting and ASP.NET Web Services which are widely used.

Keywords: Distributed Systems, SOAP, .NET Remoting, ASP.NET, Web Services.

1. INTRODUCTION:

Simple Object Access Protocol (SOAP) is a
specification that provides applications to
communicate with other applications. Two major
design goals for SOAP are simplicity and
extensibility. SOAP attempts to meet these goals by
omitting, from the messaging framework, features that
are often found in distributed systems. Simple Object
Access Protocol (SOAP) is a technology which is
designed to achieve distribution of objects over the
Internet. In fact, it is hard to provide distribution of
objects and robust and reliable messaging between
them due to Wide Area Network obstacles, such as
scalability. SOAP which is proposed and developed
by W3C (World Wide Web Consortium) is an XML
based protocol that consists of three parts: an
envelope that defines a framework for describing what
is in a message and how to process it, a set of
encoding rules for expressing instances of application-
defined data types, and a convention for representing
remote procedure calls and responses [1]. SOAP
proposes the manipulation of a specific message
format in Extensible Markup Language (XML) and a
message transport protocol such as Hypertext Transfer
Protocol (HTTP). Manipulating SOAP, different
systems are able to communicate with each other by
exchanging text messages encoded as XML. In fact,
communication can be implemented over a transport
protocol such as HTTP [2].

Fig. 1 and its explanation is taken from the article
“SOAP: Simple Object Access Protocol” by William
Bordes and Johann Dumser. In this figure the
mechanism of SOAP is explained in details as a high-
level diagram. The message is generated and
translated to XML format and sent to other
Application Server via HTTP. And other Application
Server encodes the XML formatted message. The
received message is controlled by XML Parser to
check validity of the message using the HTTP and
XML headers, it either rejects or accepts message.
After validation, the requested application executes its
task and the result is sent to caller application via
same way.

SOAP message which enables application to
communicate with each other has two main parts,
including optional header and a required body. The
header contains blocks of information relevant to how
the message is to be processed. This includes routing
and delivery settings, authentication or authorization
assertions, and transaction contexts. The body
contains the actual message to be delivered and
processed. Anything that can be expressed in XML
syntax can go in the body of a message. In Fig. 2, the
parts of the SOAP message are showed in details.

SOAP has several major advantages to take place in
the distributed systems. In fact, as mentioned above,
SOAP is based on XML specification. In the nature of
SOAP, it is a text-based message changing protocol.
This provides processes to pass messages through

JOURNAL OF AERONAUTICS AND SPACE TECHNOLOGIES
JULY 2006 VOLUME 2 NUMBER 4 (23-28)

Comparison of SOAP Based Technologies: .NET Remoting and ASP.NET Web Services

YILMAZ
24

firewall without any security risks. It can be easily
said that the content of SOAP message can not be
encapsulate any hazardous data. In addition to this,
SOAP is an open standard that is built upon open
technologies such as XML and HTTP. In this manner,
this specification provides de-facto standard for true
distributed interoperability. On the other hand, SOAP

has actual disadvantages that are based on its nature.
As we mentioned above, SOAP is built upon HTTP
protocol which requires a stateless request and
response architecture. This means that SOAP
specification does not offer permanent communication
between participators.

Actually, SOAP is a specification rather than
distributed architecture. For comparing SOAP with
other distributed technologies, this difference is vital
to indicate which distributed technologies are used
and how the system is realized. For selecting
distributed technologies to build application or
general expression a system, there are actual some
considerations, including scalability, performance,
state management, garbage collection and security
which are the foremost considerations. Table 1 shows
how SOAP compares with the common distributed
architectures based on these criteria [2].

2. .NET REMOTING FRAMEWORK

.NET Remoting Framework provides developer to
build applications in which objects are distributed to
different application domains to communicate with
each other. Remoting in the .NET framework consists
of numerous services that provide the ability to invoke
objects that exist anywhere on the network. These
objects could be in the same machine, on the same
network, or located around the world. Only objects
that are hosted within a CLR environment can be
accessed using .NET Remoting.

In the essence of .NET Remoting, there are three
major topics in which are discussed to imply .NET
Remoting capabilities, including type of marshalling
data, channel type and objects. According to type of
marshalling data, two types of marshalling, binary
formatter and SOAP formatter, are manipulated in
.NET Remoting framework. Actually, these different
formatter types are independent from the channel
type. Another important key point in .NET Remoting
is type of channel. The .NET Remoting layer supports
pluggable channels how messages are sent. There are
two standard channels for the message transfer,
independent of format (i.e. Binary format or Soap
format) both TCP Channel and HTTP Channel
provides an implementation for a sender-receiver
channel that uses the HTTP protocol to transmit
messages [4].

Figure 1. High-Level diagram of SOAP in a distributed system

Figure 2. The SOAP Message

Comparison of SOAP Based Technologies: .NET Remoting and ASP.NET Web Services

YILMAZ
25

Table 1. Comparison of SOAP with other distributed architectures

 CORBA DCOM JAVA-RMI SOAP

Pr
ot

oc
ol

N

am
e General Inter-ORB

Protocol (GIOP)
Object Remote
Procedure Call
(ORPC)

JRMP Any transport
protocol.

Sc
al

ab
ili

ty

Corba uses stateful
programming model
which is not as
scalable.

Least scalable. Clients
ping the server at
regular intervals to
ascertain that it is still
available. This
pinging process limits
scalability when large
of connections are
involved.

Relatively scalable. Uses
RMI Registry which could
limit scalability if it is
located on one server.

Most scalable of the
four.

Pe
rf

or
m

an
ce

Once an object
reference is
obtained, CORBA
permits direct client-
server
communication.
Hence subsequent
communication is
very fast.

Requires several
round-trips to activate
and use the remote
object. Once object’s
reference is obtained,
direct object access
without DCOM can
take place from client.

Good performance.
Works for Java language
only and hence is fine-
tuned for it.

Currently low.
Overhead of
extracting SOAP
envelope, parsing
XML, creating
appropriate objects
and converting
parameters.

St
at

e
M

an
ag

em
en

t Connection-oriented
and stateful.

Provides location
transparency. Is
stateful.

Very flexible. Provides
both stateful and stateless
sub-protocols.

Not addressed by
SOAP. If HTTP is
the protocol used, it
is stateless.

G
ar

ba
ge

C

ol
le

ct
io

n

CORBA does not
address distributed
memory
management.
Vendor-specific
implementations
exist.

Provides automatic
garbage collection
using the pinging
mechanism discussed
earlier.

Excellent garbage
collection

SOAP does not
address garbage
collection.

Se
cu

ri
ty

No intrinsic support
for authentication,
authorization or
identity.

Very security-
oriented. Provides
support for
authentication,
authorization or
identity. User can
set appropriate level
of security.

Since Java RMI works
with java programming
language it inherits the
security built into Java.
Use of RMI Security
Manager can enable
dynamic class loading
thus providing additional
security.

Since SOAP is a
wire protocol, it
does not address
security. Security
is determined by
the transport
protocol that it
uses. For example,
HTTPS using
secured socket
layer (SSL) when
HTTP is the
transport protocol.

The last characteristic and also called major topic of
.NET Remoting is type of objects. There are three
types of object which are offered from .NET Remoting
Framework, including “Single Call”, “Singleton
Objects” and “Client-Activated Objects”.

• Single Call objects are able to response one and
only one request coming in. In this manner, Single Call
objects are used in particular cases, e.g. where the
objects are required to do a finite amount of work.
Single Call objects are usually not required to store
state information, and they cannot hold state

Comparison of SOAP Based Technologies: .NET Remoting and ASP.NET Web Services

YILMAZ
26

information between method calls. However, Single
Call objects can be configured in a load-balanced
fashion [3].

• Singleton objects are those objects that service
multiple clients and hence share data by storing state
information between client invocations. They are
useful in cases in which data needs to be shared
explicitly between clients and also in which the
overhead of creating and maintaining objects is
substantial [3].

• Client-activated objects (CAO) are server-side
objects that are activated upon request from the client.
This way of activating server objects is very similar to
the classic COM coclass activation. When the client
submits a request for a server object using "new"
operator, an activation request message is sent to the
remote application. The server then creates an instance
of the requested class and returns an ObjRef back to
the client application that invoked it. A proxy is then
created on the client side using the ObjRef. The client's
method calls will be executed on the proxy. Client-
activated objects can store state information between
method calls for its specific client and not across
different client objects. Each invocation of "new"
returns a proxy to an independent instance of the server
type [3].

.NET Remoting Framework provides applications to
invoke methods in another application domain. The
other application domain or address space could be on
the same machine or a different one. In this point,
.NET Remoting Framework can be regarded as RPC in
an object-oriented fashion. To sum up, overall
mechanism of .NET Remoting (see Fig. 3) consists of:

1. Server Side Object is registered to one channel (its
features are depended on the developer) and listened
incoming messages from this channel.

2. Client Object marshals its invoking message with
using proxy object to send remote server object.

3. The Remote server object gets the message and
response it on the same channel.

3. ASP.NET WEB SERVICES

A Web service is a software system designed to
support interoperable machine-to-machine interaction
over a network. It has an interface described in a
machine- processable format (specifically WSDL).
Other systems interact with the Web service in a
manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-
related standards [5]. In fact, as mentioned before,
Web Services architecture is an open standard which
was offered by W3C (World Wide Web Consortium).

Web Services architecture allows programs written in
different languages on different platforms to
communicate with each other in a standards-based
way. Also, it can be said that Web Services
specification is not .NET Framework specific.

Web Services expose useful functionality to users
through a standard protocol. Mostly, the protocol
manipulated for Web Services is SOAP. Web Services
provide a way to describe their interfaces in enough
detail to allow a user to build a client application to
talk to them. This description is usually provided in an
XML document called a Web Services Description
Language (WSDL) document. Web Services are
registered so that potential users can find them easily.
This is done with Universal Discovery Description and
Integration (UDDI). These UDDI services provide
developers to integrate any operation which is offered
by particular web service to their applications.

Web Services need five structures to realize remote
communication between two applications, including
discovery, description, message format, encoding and
transport.

Discovery refers that it is necessary to resolve location
of the remote service by the client application for
which it requests to web service. The description of a
web service contains structured metadata about the
interface that is intended to be consumed by a client
application as well as written documentation about the
web service including examples of use. Message
format, in order to exchange data, a client and a server
have to agree on a common way to encode and format
the messages. Encoding refers that the data transmitted
between the client and the server needs to be encoded
into the body of the message. Finally, transport refers
that once the message has been formatted and the data
has been serialized into the body of the message, the
message must be transferred between the client and the
server over some transport protocol [6].

Web Services mechanism is based on creating a
service file which includes web methods for serving
particular operations to its clients. In this mechanism,
creating service and locating it are the major topics.

Figure 3. .NET Remoting framework general structure

Comparison of SOAP Based Technologies: .NET Remoting and ASP.NET Web Services

YILMAZ
27

Due to the fact that the web service could work
properly unless its location is lost by its client.

The ASP.NET Web Services structure offers a
programming interface which is based on SOAP
messages to method invocations. It accomplishes this
by providing a very simple programming model based
on mapping SOAP message exchanges to individual
method invocations. The clients of ASP.NET Web
Services do not have to know anything about the
platform, object model, or programming language used
to build them. The services themselves don't have to
know anything about the clients that are sending them
messages. The only requirement is that both parties
agree on the format of the SOAP messages being
produced and consumed, as defined by the Web
service's contract definition expressed using WSDL
and XML Schema (XSD).

ASP.NET Web Services rely on the
System.Xml.Serialization.XmlSerializer class to
marshal data to and from SOAP messages at runtime.
For metadata, they generate WSDL and XSD
definitions that describe what their messages contain.
The reliance on pure WSDL and XSD makes
ASP.NET Web Services metadata portable; it
expresses data structures in a way that other Web
service toolkits on different platforms and with
different programming models can understand. In
some cases, this imposes constraints on the types you
can expose from a Web service—XmlSerializer will
only marshal things that can be expressed in XSD.
Specifically, XmlSerializer will not marshal object
graphs and it has limited support for container types
[7].

4. COMPARISON OF .NET REMOTING AND
 ASP.NET WEB SERVICES

The .NET Remoting and ASP.NET Web Services are
both using SOAP specification, as mentioned above. It
seems that both technologies can be regarded as in an
RPC model. However, there are differences between
these technologies according to their natures and usage
fields.

First of all, ASP.NET based Web Services can only be
accessed over HTTP. .NET Remoting can be used
across any protocol. Actually, in .NET Remoting , the
object can be registered to the channel with
manipulating TCP or HTTP protocols. Thus, it can be
easily seen that surplus information on communication
channel is increasing when Web Services architecture
is used. In other words, it causes to decrease the
channel throughput. However, it is recommended that
HTTP protocol provides robust communication when
the communication environment takes place in World
Area Network. Due to the fact that communication
with using TCP may be obstructed by firewalls.

In addition to this, Web Services work in a stateless
environment where each request results in a new object
created to service the request. That’s why ASP.NET
Web Services are based on stateless communication.
The client is recognized as new coming client whether
it tries second or more communications or not. On the
other hand, .NET Remoting supports state
management options and can correlate multiple calls
from the same client and support callbacks. Actually,
as seen above, the singleton object model of .NET
Remoting provides multi-user shared object state. This
means the server of the object keeps track of the object
state after the method invocations, and it could provide
object state changing to its client.

Furthermore, Web Services serialize objects according
to XML contained in the SOAP messages. For this
reason, it can only handle with items that can be fully
expressed in XML. .NET Remoting relies on the
existence of the common language runtime assemblies
that contain information about data types. In fact, this
limits the information that must be passed about an
object and allows objects to be passed by value or by
reference. Web Services architecture provides simple
programming structure, due to the fact that, it is based
on XML specification. However, when attempting to
realize more complex distributed application, this
structure may not sufficient to perform both client and
server operations as possible as.

Finally, Web Services support interoperability across
platforms and are good for heterogeneous
environments. .NET Remoting requires the clients be
built using .NET, or another framework that supports
.NET Remoting, which means a homogeneous
environment. Thus, .NET Remoting is not flexible to
build applications that are able to work on all
platforms. In fact, it requires .NET Remoting
Framework specific structures to enable
communication. For instance, it is necessary to activate
server side object from the client side when singleton
object model is manipulated.

5. CONCLUSION

All things considered, when making decision for
choosing .NET Remoting or ASP.NET Web Services,
the important points are mentioned above. According
to developer’s point of view, Dhawan and Ewald, first,
use ASP.NET Web services by default. They are
simpler to implement and use, they offer the broadest
possible reach to client platforms, and ASP.NET Web
services client proxy code can be invoked from code
run in a sandbox under the default security policy [7].
In fact, it is easy to learn and easy to implement Web
Services due to its nature. In addition to this, although
the .NET Remoting is proposed, developer should try
to solve problem with using Web Services.

Comparison of SOAP Based Technologies: .NET Remoting and ASP.NET Web Services

YILMAZ
28

Actually, there is no chance to manipulate Web
Services instead of .NET Remoting due to the
characteristic of such problems. For instance, you have
to arrange both client and server configuration with
using objects simultaneously. This means that server
side activated object is responsible for controlling the
client side configuration as same as it changes its
configuration. Web Services architecture does not
allow system to perform this operation. In such
example, .NET Remoting has to be chosen.

In conclusion, .NET Framework offers two SOAP
based technologies, ASP.NET Web Services and .NET
Remoting. .NET Remoting provides more complex
structure, nevertheless, it offers more sophisticated
operation comparing with the ASP.NET Web Services.
On the other hand, ASP.NET Web Services provides
more easier implementation structure comparing with
the .NET Remoting Framework.

6. REFERENCES

[1] Don Box, David Ehnebuske, Gopal Kakivaya,
Andrew Layman, Noah Mendelsohn, Henrik Frystyk
Nielsen, Satish Thatte, Dave Winer, Simple Object
Access Protocol (SOAP) 1.1., W3C Note 08 May
2000.

[2] Inder Nandrajog, Simplified Object Access
Protocol, Management of IS, Spring, 2001.

[3] Paddy Srinivasan, An Introduction to Microsoft
.NET Remoting Framework, Microsoft Corporation,
July 2001.

[4] K.Sasikumar, .NET Remoting, c-sharpcorner.
Com, February 2004.

[5] David Booth, Hugo Haas, Francis McCabe, Eric
Newcomer, Michael Champion, Chris Ferris, David
Orchard, Web Services Architecture, W3C Working
Group Note, 11 February 2004.

[6] Scott Short, Building XML Web Services For
MS.NET Platform, by Microsoft Corporation, 2002.

[7] Priya Dhawan, Tim Ewald, ASP.NET Web
Services or .NET Remoting: How to Choose, Microsoft
Developer Network, September 2002.

VITAE

Güray YILMAZ

He was graduated from Computer Engineering
Department at The İstanbul Technical University,
Istanbul in July 1991. He received his M.Sc. and PhD
degrees in Computer Engineering from the same
university in 1995 and 2002 respectively. He has been
working an instructor at The Turkish Air Force
Academy since 1991. His current research areas are
operating systems, distributed systems, distributed
object-oriented systems, web services.

