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ABSTRACT 
This paper is concerned with information structures used in rigid formations of unmanned aerial vehicles 
(UAV’s) and micro-satellite clusters that have leader-follower architecture. The focus of the paper is on 
sensor/network topologies to secure control of rigidity. Specifically, we study the problem of determining the 
directions of links of an undirected formation so that the resulting formation is rigid, which is called the 
“Direction Problem.” The algorithm given in the paper establishes a sequential way of determining the 
directions of links in a leader-follower formation from a given undirected rigid formation. The algorithm is 
related to our simpler process of finding two spanning trees, as well as the counts in Laman’s Theorem. In 
common with tree finding algorithms, it is greedy, so the order of testing edges does not effect the size of 
maximal independent sets found, or the distribution of the edges through the UAV’s and micro-satellites. 
 
Keywords Multi-agent systems, UAV formations, satellite clusters, robot formations, rigid formations, graph 
theory 
 
1.  INTRODUCTION 
 
Recent years have seen significant interest in 
formations of multiple mobile autonomous agents. 
(see for example [1-10].) This interest arises from the 
broad potential for applications, including formation 
flight, satellite clusters, advanced transportation 
systems, distributed sensor networks, flocking and 
schooling, search-and-rescue operations, competitive 
games, and military reconnaissance and surveillance. 
In this paper, agents will simply be thought of as 
autonomous agents including unmanned aerial 
vehicles and micro-satellites. A formation is a group 
of agents moving in real 2- or 3-space, with some 
specified links whose distances are maintained. A 
formation is called rigid if the distance between each 
pair of agents does not change over time under ideal 
conditions. A formation is called minimally rigid if it 
loses its rigidity when any one of its links is removed 
from the formation. In other words, a minimally rigid 
formation has the minimum number of links to 
maintain rigidity. If a formation is rigid but not 
minimally rigid, then it is called a redundantly rigid 
formation.  
 
Sensing/communication links are used for maintaining 
fixed distances between agents. The interconnection 
structure of sensing/communication links is called 
sensor/network topology. In practice, actual agent 
groups cannot be expected to move exactly as a rigid 
formation because of sensing errors, actuation errors, 
actuation delays, vehicle modelling errors, etc. The 

ideal benchmark formation against which the 
performance of an actual agent formation is to be 
measured is called a reference formation.  
In reality, agents are entities with physical 
dimensions. For modeling purposes in this paper, 
agents are represented by points called point agents. 
Distances between all agent pairs can be held fixed by 
directly measuring distances between only some 
agents and keeping them at desired values. A distance 
constraint or link, is a requirement that a distance 
between two agents, depicted with d, be maintained 
through a sensing/communication link and some 
control strategy. Distance constraints are sometimes 
referred to as range or separation constraints. With 
enough distance constraints, the whole formation will 
be rigid, even without there being a distance constraint 
between every pair of agents. 
 
Two agents connected by a sensing/communication 
link are called neighbors. There are two types of 
neighbor relations in rigid formations. In the first type, 
the neighbor relation is symmetric, i.e., if agent i 
senses/communicates with agent j and performs action 
upon the information it receives, so does agent j with 
agent i. A link with a symmetric neighbor relation is 
represented graphically by a straight line. In the 
second type, the neighbor relation is asymmetric, i.e., 
if agent i senses/communicates with agent j and 
performs actions upon the information it receives, then 
agent j does not make use of any information received 
from agent i although it may sense/ communicate with 
agent i. For example, rigid formations with a leader-
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follower architecture have the asymmetric neighbor 
relation. A link with an asymmetric neighbor relation 
between a leader and a follower is represented by a 
directed edge, or arrow, pointing from the follower to 
the leader, i.e., head is the leader and tail is the 
follower. The terms “undirected formation” and 
“directed formation” are used throughout the paper to 
describe formations with symmetric neighbor relations 
and formations with leader-follower architecture, 
respectively. 
 
The work in [2,11,15,16] suggested an approach based 
on rigidity for maintaining formations of autonomous 
agents with sensor/network topologies that use 
distance information between agents, where the 
neighbor relation is symmetric. Rigidity of undirected 
formations with distance information is well 
understood in 2-space, and there are partial results in 
3-space [11]. Other researchers focused on using both 
distance and bearing information to maintain 
formations that have leader-follower architecture [4]. 
Formations with directed links were studied in 
[4,5,12,13,14,17,18].  
 
In this paper, we address the problem of determining 
the direction of links in a leader-follower formation so 
that the resulting formation is rigid, which is called the 
“Direction Problem.” The algorithm given in §5 
establishes a sequential way of determining the 
directions of links from a given undirected rigid 
formation so that the resulting directed formation is 
rigid. 
 
2. RIGID FORMATIONS 
 
We start with a brief overview of rigidity. Recall that 
a formation is rigid if the distance between each pair 
of agents does not change over time under ideal 
conditions. It is not necessary to have sensing and 
communication links between each pair of agents to 
maintain a rigid formation [11]. Distances between all 
agent pairs can be held fixed by directly measuring 
distances between only some agents and keeping them 
at desired values. We show such an approach for 
maintaining formations with a limited number of links 
with distance information both in 2- and 3-
dimensional space.  
 
Central to the development of the approach in this 
section will be rigid frameworks studied in 
mathematics and engineering for more than a century 
under different names such as frameworks, linkages, 
and mechanisms (see for example [19-26]). One way 
of visualizing rigidity is to imagine a collection of 
rigid bars connected to one another by idealized ball 
joints, which is called a bar-joint framework. By an 
idealized ball joint we mean a connection between a 
collection of bars which imposes only the restriction 
that the bars share common endpoints. Now, can the 
bars and joints be moved in a continuous manner 

without changing the lengths of any of the bars, where 
translations and rotations do not count? If so, the 
framework is non-rigid; if not, it is rigid. The answer 
depends on factors such as which bars are connected 
to each other at which ball joints, bar lengths, and the 
dimensionality of the space in which the framework is 
placed.  
 
Actual physical bar-joint frameworks can be used in 
modeling a wide variety of physical structures, 
including rigid ones such as bridges as well as non-
rigid structures such as organic molecules. 
Appropriate bar-joint frameworks representing such 
structures could be constructed to test the model for 
rigidity. However, such a concrete framework is 
feasible only for 2- and 3-dimensional space, and such 
concrete models become cumbersome as the number 
of bars and joints increases. The aim of rigidity theory 
is to develop methods for predicting rigidity without 
building a model. 
 
The idea of a point formation is essentially the same 
as the concept of a “framework” studied in 
mathematics as well as within the theory of structures 
in mechanical and civil engineering. For our purposes, 
a point formation Fp= ({p1,p2,...,pn},E) provides a 
natural high-level model for a set of n agents moving 
in real 2- or 3- dimensional space. In this context, the 
points pi represent the positions of agents in Rd {d = 2 
or 3} and the links in E label those specific agent pairs 
whose inter-agent distances are to be maintained over 
time. In practice actual agent positions cannot be 
expected to move exactly in formation because of 
sensing errors, vehicle modelling errors, etc. The ideal 
benchmark formation against which the performance 
of an actual agent formation is to be measured is 
called a reference formation.  
 
Each point formation Fp uniquely determines a graph 
G = (V,E) with vertex set V {1, 2,...,n} and edge set E, 
as well as a distance function δ : E → R whose value 
at (i, j)∈E is the distance between pi and pj. Let us 
note that the distance function of Fp is the same as the 
distance function of any point formation Fq with the 
same graph as Fp provided q is congruent to p in the 
sense that there is a distance preserving map T : Rd → 
Rd such that T(qi) = pi , i ∈{1, 2,...,n}. In the sequel we 
will say that two point formations Fp and Fq are 
congruent if they have the same graph and if q and p 
are congruent. By a trajectory of Fp, we mean a 
continuously parameterized, one-parameter family of 
points {q(t) : t ≥ 0} in Rnd, which contains p. A point 
formation Fp is said to be rigid if the distance between 
every pair of its points remains constant along any 
trajectory on which the lengths of all of its 
maintenance links in E are kept fixed. In other words, 
a point formation Fp is said to be rigid if rigid motion 
is the only kind of motion it can undergo along any 
trajectory on which the lengths of all links in E remain 
constant. Thus, if Fp is rigid, it is possible to “keep 
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formation” by making sure that the lengths of the 
formation’s maintained links do not change as the 
formation moves. A formation is called minimally 
rigid if it loses its rigidity when any one of its links is 
removed from the formation. 
 
3. GENERIC RIGIDITY 
 
In this section, we review “generic” rigidity, which is 
the type of rigidity most useful for our purposes. In 
practice, actual agent groups cannot be expected to 
move exactly in rigid formation because of sensing, 
modeling, and actuation errors. With generic rigidity, 
the topology will be robust for maintaining formations 
under small perturbations. A point formation Fp is 
generically rigid if it is rigid for almost all choices of 
p in Rdn. Generic rigidity is a property of only the set 
of maintenance links, or the underlying graph. It does 
not even claim that Fp itself is rigid but only that 
almost all nearby points q give rigid formations Fq. 
The concept of generic rigidity does not depend on the 
precise distances between the points of Fp but 
examines how well the rigidity of formations can be 
judged by knowing the vertices and their incidences, 
in other words, by knowing the underlying graph.  
 
For 2-dimensional space, we have a complete 
combinatorial characterization of generically rigid 
graphs, which was first proved by Laman in 1970 
[24]. In the theorem below, |.| is used to denote the 
cardinal number of a set, i.e., the number of elements 
in a set. 
 
Theorem (Laman [24]). A graph G = (V,E) (where E 
∅ or n > 1) is generically rigid in 2-dimensional 

space if and only if there is a subset E’⊆E satisfying 
the following two conditions: (1) |E’ | = 2|V| − 3, (2) 
For all E’’⊆ L’, E’’≠∅, |E’’| ≤ 2|V(E’’ )|−3, where 
|V(E’’)| is the number of vertices that are end-vertices 
of the edges in E’’. 

≠

 
There is no comparable complete result for 3-
dimensional space, though there are useful partial 
results [12]. Although we lack a characterization in 3-
dimensional space, there are sequential techniques to 
generate rigid classes of graphs both in 2- and 3-
dimensional space based on the vertex addition, edge 
splitting and vertex splitting operations [12].  
 
4. DIRECTED RIGID FORMATIONS 
 
First, we give some definitions from graph theory, 
which are relevant to all point formations with leader-
follower architecture.  
 
A graph in which each edge is replaced by a directed 
edge is called a digraph, also called a directed graph. 
When there is a danger of confusion, we will call a 
graph, which is not a digraph, an undirected graph. A 
digraph having no multiple edges or loops 

(corresponding to a binary adjacency matrix with 0’s 
on the diagonal) is called a simple digraph. A directed 
edge, is written with an ordered pair of end-vertices (i, 
j) representing an edge directed from i to j and drawn 
with an arrow from i to j. Symmetric pairs of directed 
edges are called bidirected edges. In the context of 
formations, a bidirected edge is equivalent to an 
undirected edge in the underlying graph of a 
formation. In formations that have a leader-follower 
architecture we will use only digraphs with no 
bidirected edges. The number of edges directed into a 
given vertex i in a digraph G is called the in-degree of 

the vertex and is denoted by d
-

G (i). The number of 
edges directed out from a given vertex i in a digraph G 
is called the out-degree of the vertex and is denoted by 
d+

G (i). The out-neighborhood N+
G (i) of a vertex i is 

{j ∈V : (i, j) ∈E}, and the in-neighborhood N
-

G (i) of 
a vertex i is {j∈V : (j,i) ∈E}. The union of out-
neighborhood and in-neighborhood is the set of 
neighbors of i, i.e., the (open) neighborhood of i, 
NG(i). When i is also included, it is the closed 
neighborhood of i, NG[i]. 
 
In a formation with leader-follower architecture, each 
link is denoted with an arrow directed from follower 
to leader. One key type of leader-follower topology is 
as follows: There is one global leader and one first-
follower of the global leader. The global leader does 
not follow any other agent, and the first follower only 
follows the global leader, so they are connected with 
one link pointed from the first-follower to the global 
leader. The rest of the agents are followers of at least 
two other agents. Any agent can also be the leader of 
other agents. We call such an architecture a global 
leader-first follower architectures. Fig. 1 shows such 
an example. If global leader-first follower formation is 
to be rigid, then it is easy to see that ordinary agents 
(agents other than the global leader and the first 
follower) must have at least two links. The global 
leader has 2 degrees of freedom, the first follower has 
1 degree of freedom, which makes 3 degrees of 
freedom in total. This allows these agents to control 
rigid motions (translation and rotations) of a 
formation. If any one of the other agents has less than 
two links, this results in an additional degree of 
freedom, and the formation need not move rigidly 
anymore. Recall that the global leader has no outgoing 
links and the first follower has one link of out-degree 
1. Because every other agent is at least of out-degree 
2, we have at least 2(n – 2) + 1 = 2n – 3 links in total.  
 
With a generically minimally rigid graph, with global 
leader-first follower architecture, all other vertices 
will have degree exactly 2. We give an explicit  
algorithm for this in detail in §5.  
 
A digraph G = (V, E) is 2-directed if for all i ∈V,    
|N+

G (i)| ≤  2. In a 2-directed digraph G = (V, E) that 
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has global leader-first follower architecture with count 
|E| = 2|V|–|3|, all vertices except the ones that 
correspond to the global leader and first follower will 
have out-degree of exactly two. Even such a digraph 
may not have an underlying rigid graph. A formation 
is directed rigid if it is minimally rigid and 2-directed 
[18]. 
 

 
                                       
Figure 1. Global leader-first follower architecture: All 
vertices are of out-degree 2, except that there is one 
vertex of out-degree 0 (labeled with 1), and another 
vertex of out-degree 1 (labeled with 2), and these two 
vertices are neighbors. 
 
5. RESULTS: CREATING A DIRECTED RIGID 
FORMATION FROM AN UNDIRECTED RIGID 
FORMATION 
 
Directed rigidity of a formation depends not only on 
the underlying undirected formation but also on the 
directions of links between agents. In particular, the 
directed formation must be 2-directed. Given a 
generically minimally rigid undirected formation, how 
do we find the directions of links to create a stably 
rigid directed formation? Below we present one way 
of doing this. We start with giving preliminary 
definitions.  
 
A graph is connected, if there is a path from any 
vertex to any other vertex in the graph. A tree is a 
graph in which any two vertices are connected by 
exactly one path. A spanning tree of a connected, 
undirected graph is a tree which includes every vertex 
of that graph. There is a standard way of partitioning 
the edges in a generically minimally rigid graph with 
the following properties: 
 
1) there are three trees; 
2) there are exactly two trees at each vertex; 
3) no two non-empty subtrees span the same set of 
vertices. 
 
These properties define a 3Tree2 partition of the edges 
[21], [25], [26]. For a generically minimally rigid 
graph G = (V,E), it is also known that, for each 
(i,j)∈E, the multigraph obtained by doubling the edge 
(i,j) is the union of two spanning trees [21], [27]. 

 
Now we give a sequential algorithm to find the 
direction of links to create a stably minimally rigid 
directed formation from a minimally rigid undirected 
formation: (Let us assume that i represents the global 
leader, j represents the first follower connected to i by 
the edge (j,i).)  
 
Algorithm: 2-Direction of a Minimally Rigid 
Formation.  
1) Double the edge (j,i) - The entire graph can now be 
partitioned into two spanning trees. 
2) Remove (j,i) from one of the two trees - We now 
have 3-trees, one spanning, and one each containing 
the original two vertices. 
3) Orient the spanning tree down to the selected 
leader. 
4) Orient each of the other two trees down to the 
global leader or the first follower, whichever is in this 
revised tree. 
 

 
                     (a)                                      (b) 

 
                     (c)                                        (d) 
Figure 2. Obtaining two spanning trees: A minimally 
rigid point formation is shown in (a). The graph with 
the double edge (2,1) is shown in (b). The global 
leader is labeled with 1 and the first follower is 
labeled with 2. The graph in (b) can be partitioned into 
two spanning trees as shown in (c) and (d). 
 
This algorithm gives a directed rigid directed 
formation with out-degree 2 at each point except the 
first-follower of out-degree 1 and the global leader of 
out-degree 0. We give the following example to 
illustrate this algorithm: 
 
Example: Consider the generically minimally rigid 
point formation shown in Figure 2(a). Assume that the 
global leader is labeled with 1 and the first follower is 
labeled with 2. The graph with the double edge (2,1) is 
shown in Fig. 2(b). This graph can be partitioned into 
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two spanning tress as shown in Figs. 2(c) and 2(d). 
When we remove (2,1) from one of the two trees, in 
this case from Fig. 2(d), we now have three trees: one 
spanning as shown in Fig. 2(c), and one each 
containing the original two vertices as shown in 
Figures 3(a) and 3(b). Fig. 4(a) shows the oriented 
spanning tree down to the global leader. Figs. 4(b) and 
4(c) show the oriented two trees down to the global 
leader or the first follower. Finally, if we put together 
the edge topologies in Figs. 4(a), 4(b), and 4(c), we 
obtain the directed point formation shown in Fig. 4(d). 
 

 
                    (a)                                      (b) 
Figure 3. Obtaining three trees: When we remove 
(2,1) from one of the two spanning trees in Figs. 2(c) 
and 2(d), in this case from Fig. 2(d), we now have 
three trees: one spanning as shown in Fig. 2(c), and 
one each containing the original two vertices as shown 
in (a) and (b) in this figure. 

 
                     (a)                                       (b) 
 

 
                     (c)                                        (d) 
Figure 4. Orienting the spanning tree: The oriented 
spanning tree down to the global leader is shown in 
(a). The oriented two trees down to the global leader 
or the first follower are shown in (b) and (c). If we put 
together the edge topologies in (a), (b) and (c), we 
obtain the directed point formation shown in (d). 
 
We note that this algorithm permits an arbitrary choice 
of the first edge in the graph. There is also a way to 
deduce this decomposition directly from the 

assumption that the rigidity matrix has independent 
rows and full rank [26]. Given a rigid graph G, there is 
a refined fast (worst case O(|V||E|)) implemented 
algorithm (the pebble game) which:  
▪ selects a minimally rigid sub-graph in O(|V||E|) time 
and gives an orientation towards a selected leader-
follower edge with out-degree 2 on all other vertices 
for any minimally rigid graph;  
▪ can switch from one such choice of leader-follower 
edge in a minimally rigid graph to an orientation 
towards another leader-follower edge in linear time, 
by cascading pebbles; 
▪ can detect whether there is an acyclic 2-directed 
orientation towards a given leader-follower edge. 
 
The algorithm is related to our simpler process of 
finding two spanning trees, as well as the counts in 
Laman’s Theorem. In common with tree finding 
algorithms, it is greedy, so the order of testing edges 
etc. does not effect the size of maximal independent 
sets found, or the distribution of the edges through 
the agents. The normal implementation can give, as an 
immediate output, the desired 2-directed graph. Given 
some set of vertices and independent edges, the 
algorithm can also select additional edges to extend 
this to an (oriented) minimally rigid graph, in order 
|V|2 time.  
 
There is a third way to generate the digraph. Given a 
minimally rigid graph, there is a Henneberg sequence 
[11] starting with the selected global leader-first 
follower edge. Applied as directed vertex addition and 
edge splitting, this generates a stably rigid directed 
formation. Combined with arbitrary cascades of 
pebbles, these give all possible directed rigid 
formations. There are order O(|V|2) algorithms for 
directly extracting either a 3Tree2 covering or the 
Henneberg sequence from the minimally rigid graph. 
However, some recent implementations for these 
actually use the pebble game as their core engine. 
 
Simulation on a directed formation generated by the 
algorithm presented above is shown in Fig. 5 (a) and 
(b). In this simulation, the global leader is denoted 
with 1, the first follower is denoted with 2, ordinary 
agents are denoted with 3, 4, 5 in Fig. 5(a). As the 
global leader moves on a zigzag trajectory as shown in 
Fig. 5(b), other agents move in such a way that the 
entire formation maintains its rigidity, i.e., inter-agent 
distances are preserved. 
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                                           (a) 
 

 
                                           (b) 
Figure 5. Simulation of a directed formation: The 
links of this formation is created using the algorithm 
given in §5. We test the rigidity of the formation in a 
simulation by moving the global leader on an arbitrary 
trajectory. (a) The global leader is denoted with 1, the 
first follower is denoted with 2, and ordinary agents 
are denoted with 3, 4, 5. (b) The global leader moves 
along a zigzag trajectory. The remaining agents move 
in such a way that inter-agent distances are preserved. 
 
6. CONCLUSION 
 
The algorithm given in §5 establishes a sequential way 
of determining the directions of links from a given 
undirected rigid formation so that the resulting 
formation is directed rigid. We anticipate that the 
pattern of analysis given in this paper will be useful in 
the analysis of formation rigidity and stability 
problems and will be a useful tool to create directed 
rigid formations. 
 
A sequel will give analogs with rigid formations in 3-
space, with other types of information structures such 
as the following: formations with directions, bearings 
(a.k.a. angle of arrival) in both 2- and 3-space; 
formations with mixed directions-distances or 
bearings-distances in 2- and 3-space; formations with 
mixed directed/undirected links.  
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