

 JOURNAL OF AERONAUTICS AND SPACE TECHNOLOGIES
JUNE 2007 VOLUME 3 NUMBER 2 (25-36)

USING A META-LANGUAGE TO BRIDGE THE GAP BETWEEN

NATURAL LANGUAGES AND COMPUTER LANGUAGES

Selim TEMİZER

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

Artificial Intelligence Laboratory
Cambridge, Massachusetts, USA

temizer@alum.mit.edu

ABSTRACT
Natural languages have vast vocabularies, complex grammars and inherent ambiguities that make them difficult
to be processed directly by computers, even with state-of-the-art technology. Therefore, in order to communicate
with computers we need to ‘develop software’, which is actually the very process of translating our problem
statements, data and solution algorithms from the languages we speak to the languages that computers speak.
But software development and maintenance are costly, time consuming and have many major challenges of their
own. In this document we present a group of techniques and tools, collectively named as Temizer Description
System, that aim to bridge the gap between natural languages and computer languages by enabling computers
to understand the logical structure of natural language texts. The main idea is to tag texts piece by piece in order
to make them semantically meaningful to the computers. Once computers start figuring out the meaning of text
chunks, they can also use the same chunks to talk back to us and we demonstrate how this new and effective way
of communication could be used to automate (i.e. eliminate) many tedious and error-prone aspects of developing
and maintaining software.

Keywords: Natural language processing, meta-language, verification/validation, requirements, DO-178B

1. INTRODUCTION

Contrary to the fact that we humans built computers to
aid us in almost infinitely many ways, we have not yet
been able to teach them the way we communicate. We
make statements, describe problems, and in general
speak in Natural Languages (NL) like Turkish, but we
need to translate our problem statements, data and
solution algorithms to some Computer Languages
(CL) before they are processed by computers.

It would be great if computers were able to decipher
NL and we could communicate with them directly, but
NL have vast vocabularies, very complex grammars
and inherent ambiguities that make them practically
unsuitable for computers. To remedy this situation,
various computer programming languages such as
HyperTalk, Lingo, AppleScript, SQL and Inform have
been designed that resemble NL, and programs written
in one of these languages may roughly be understood
by a person that has no prior knowledge about the
language [1]. However, this does not mean that
writing programs in these languages are easy since
compilers and interpreters usually have low tolerance
to alternative sentence structures, synonyms, etc. We
therefore have two sides, namely NL and CL, and

although there is no trivial solution, it is highly
beneficial to bring them as close to each other as
possible. The situation is depicted in Figure 1: At the
top, there is the humans’ realm where NL are spoken.
At the bottom we have the computers speaking CL.
When we make a statement in NL and translate that
statement into CL, our goal is to make sure that the
two have exactly the same meaning. In other words,
we want maximum traceability between them.

On the NL side, the simplest forms of expressions are
verbal descriptions. Usually they are cast as formal
requirements to be more manageable and easier to
translate to CL. These requirements might sometimes
be organized hierarchically going from less detailed to
more detailed such as system level requirements, high
level requirements and low level requirements. In that
case, traceability among these levels must also be
ensured. Verbal descriptions are also usually packaged
as use cases which describe the functionalities that the
customer expects on an item by item basis. To make
them official, these use cases are usually signed by
both the customer and the contractor responsible for
translating them into CL. There are also other methods
available that shape up raw verbal descriptions and
move them closer to the CL side.

TEMİZER

25

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

Figure 1. Natural languages, computer languages and workarounds to reduce the gap between them

On the CL side, basic means of speaking to computers
are 5 generations of programming languages which
are listed below with some examples:

1. Machine language
2. Assembly language
3. High-level programming languages (C, C++, Java)
4. Languages closer to NL than typical high-level

languages (Lingo, SQL)
5. Languages used for artificial intelligence and

neural networks (Lisp, Prolog)

On top of these languages (and sometimes mingled
within their grammar) are some paradigms such as
event based, object oriented and aspect oriented
programming, that aim to provide additional structure
to these programming languages in order to make
them more comprehensible and natural to humans and
thus to nudge them closer to NL side. There are also
other techniques and paradigms for that same purpose
that we have not mentioned here.

Aside from the efforts within the NL and CL sides,
there are external workarounds to shorten the distance
between them. For example, we use activity diagrams
(together with state and interaction diagrams) to
organize NL statements into forms that resemble CL
constructs. Also there are scientific studies to restrict
grammars and dictionaries of NL in order to reduce or
eliminate ambiguity and complexity (for example at
Macquarie University, Australia [2]). These subsets of
NL are called controlled natural languages and they

serve as much better candidates to be processed by the
computers. Some examples of controlled natural
languages are Attempto Controlled English (ACE) [3],
PENG (Processable ENGlish) [4], Common Logic
Controlled English (CLCE) [5] and The KANT
Project [6].

To reduce the gap between NL and CL, we also have
techniques and tools that extend from CL to NL side.
For example, we use flowcharts to turn textual
computer programs into graphics and as we all know
‘a picture is worth a thousand words’. We might also
design our models independent of any programming
language in easy to use specification languages like
Unified Modeling Language (UML). In that case, we
might employ various tool suites that take our UML
specifications and generate associated program code
in the programming language of our choice. There are
also some graphical programming languages such as
the Specification and Description Language (SDL)
which let us visually design our programs and free us
from most of the remaining chores of programming.

In the rest of this document we will present a group of
techniques and software tools, collectively named as
Temizer Description System (TDS), that aim to bridge
the gap between NL and CL. At the center of TDS lies
a simple but an extremely powerful meta-language
that is called Temizer Description Language (TDL). In
a nutshell, TDL is used to tag natural language texts
and the software tools are used to parse and process
those texts in various different ways.

Goal:
Maximum

Traceability

Verbal Descriptions

Formal Requirements Use Cases

nth Generation
Languages

Event Based
Programming

Object Oriented
Programming

Aspect Oriented
Programming

Activity
Diagrams

Controlled
Natural Languages

Flowcharts

… Natural Languages

TDS …

UML

SDL

Computer Languages …

TEMİZER

26

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

In the following sections, we will first talk about the
motivation behind TDS. Then we will describe all
aspects of the problems that we would like to solve.
After that, a formal definition of our solution, namely
TDS, with extensive implementation details will
follow, and we will conclude our discussion after an
assessment of TDS.

2. MOTIVATION BEHIND TDS

The original problem that TDS was designed as a
personal hobby to address was a reverse engineering
project that involved analyzing, debugging and
documenting a large amount of previously developed
software for a foreign avionics system. In addition, the
documentation was expected to be very detailed in
order to meet criteria recommended by the DO-178B
[7] specification (Federal Aviation Administration of
USA, FAA, accepts use of DO-178B as a means of
certifying software in avionics).

In such projects and generally in every software
development project, documenting software is very
tedious and highly prone to errors. As an example, let
us assume that we are given a function written in C
programming language that describes the behavior of
a student depending on the state of the school library
and the amount of money that s/he has. The function
is shown in Figure 2 without any details (definitions
of enumerations, invoked functions, etc.).

Student (char library, int money)
{
 if (library) checkout(MATHBOOK);
 else borrow(MATHBOOK);

 if (money > 50) eatAt(RESTAURANT);
 else eatAt(HOME);
}

Figure 2. Sample function ‘Student’

Aside from irrelevant implementation details such as
types of local variables, the explanation that describes
how the function works and that shall be documented
about this function is shown in Figure 3.

If { Library is open }
Then { Check out math book }
Else { Borrow friend’s book }

If { There is enough money }
Then { Have dinner at restaurant }
Else { Cook dinner at home }

Figure 3. Explanation of function ‘Student’

There are various ways to formalize that explanation.
One way is to draw activity diagrams just like the one
shown in Figure 4.

Figure 4. Activity diagram for the function ‘Student’

Another way is to treat the function like a finite state
machine (FSM) and analyze it thoroughly to identify
all possible conditions and actions, and then document
all possible execution paths, or transitions, that could
be taken by an invocation of the function. An example
of such a formal analysis is shown in Figure 5.

List of all conditions
C1. Library is open
C2. Library is closed
C3. There is enough money
C4. There is not enough money

List of all actions
A1. Check out math book
A2. Borrow friend’s book
A3. Have dinner at restaurant
A4. Cook dinner at home

List of all possible transitions
T1. If C1 and C3 hold then take A1 and A3
T2. If C1 and C4 hold then take A1 and A4
T3. If C2 and C3 hold then take A2 and A3
T4. If C2 and C4 hold then take A2 and A4

Figure 5. List of transitions for the function ‘Student’

Unfortunately, if there are hundreds of functions to be
dealt with, then drawing activity diagrams becomes an
extremely tiring solution. And an FSM analysis is
absolutely not practical for especially long functions
because the number of possible transitions increases
exponentially with each branching within the function
body. Actually, it is not very uncommon to have over
1000 possible transitions for a function that has just
20-25 lines of code (for example a dispatcher function
that just controls the flow of execution based on some
conditions might have many cascaded branches). And
what doubles the pain of documenting some software

Library

Money

Check out
math book

Borrow
friend’s book

Have dinner
at restaurant

Cook dinner
at home

open closed

yes no

TEMİZER

27

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

is maintaining and updating the documentation in
parallel as the code evolves over time.

The foundations of TDS were laid upon the following
question: ‘If we were to manually translate a computer
program from some CL to NL piece by piece (locally)
without worrying about the overall (global) structure
and semantics of the whole program code, and quickly
scribble something like the one shown in Figure 3, can
we then use this translation to automatically generate
activity diagrams, transition lists or any other forms of
documentations that we want?’

As we present in the following sections, the answer to
the above question turns out to be positive. In fact, the
research that started as an automatic documentation
generation tool ended up as a meta-language and a
tool suite that could be used to automatically or semi-
automatically perform many software engineering
tasks such as generating software requirements, code
templates, test scenarios and test code stubs, setting up
traceability between verbal requirements and pieces of
code, documentation and even helping in structural
coverage analysis of the code. In the next section, we
describe the problems that TDS tackles, in details.

3. PROBLEMS

At the beginning of the life cycle of any software, we
need to have a set of software requirements from the
customer and we want them to be crisp, clear and
contain no ambiguities. This is a package that is hard
to get at once, and we usually need a few rounds of
meetings with the customer and/or some prototyping
before we can reach a complete mutual agreement.

Then we need to go from NL to CL and translate those
requirements into a programming language. While
doing this, we need to keep in mind that we might
need to set up traceability between the requirements
and the code later in the life cycle.

When the coding phase is over and the software is up
and running, verification and validation phases are in
order, if required by the customer. We need to
carefully design test scenarios that cover all aspects of
the code, develop our test cases, and exercise the code
against the tests to make sure that the developed code
functions exactly as the customer wants it to. If the
code developed will be deployed in an airborne
system or in general it is categorized as safety-critical,
then structural coverage analysis (SCA) should also
be performed on the developed software. Depending
on the safety-critical level of the code, SCA requires
one or more of statement coverage, decision coverage,
condition coverage, condition/decision coverage,
modified condition/decision coverage and multiple
condition coverage tests to be conducted. SCA not
only makes sure that the code does what it is supposed
to do, but it also makes sure that the code does not do

anything more, the test cases are actually enough to
test all aspects of the code, and there are no missing
requirements in the requirement set.

Although there are other techniques, SCA is usually
conducted on instrumented code. Instrumentation is a
technique where programs such as VectorCAST™ take
the software and inject additional software inside.
When we run the tests against the instrumented code,
the injected code pieces generate reports that tell us
which parts of the software were executed and more
importantly which parts were not.

Depending on the safety-critical level of the code,
verification and validation activities also usually entail
the very difficult and highly time consuming task of
setting up one-to-one traceability between the verbal
requirements (NL) and pieces of the software (CL).
Traceability matrices or sometimes ad hoc registering
methods are usually used to document such data.

Finally, after verification and validation, it is usually
required by the customer that some user manuals or
other documentation about the software be prepared.

All the above tasks and difficulties inherent in them
are for regular forward engineering applications where
we go from NL to CL. Let us also check out some of
the tasks when we are up against a reverse engineering
application, where we go mostly from CL to NL.

We are handed out a huge amount of previously
developed software and it needs to be analyzed,
debugged, and documented. In such projects, it is
usually easy to look at small pieces of code locally
and pretty much understand what they do, but it is
difficult to visualize how the small pieces fit together
to construct the big picture. In such cases, it would be
great if we could feed our local understandings and
findings into a system, and that system would help us
figure out the overall functionality.

Also, when documenting either our own code or code
prepared by some others, a very important aspect that
we call capturing software layers is almost always
overlooked. This phenomenon could be explained as
follows: Large code pieces are usually prepared by
teams of programmers rather than individuals. Usually
different programmers are specialized in different
areas and they take turns to work on the same piece of
software (or at least to review their peers’ work to find
bugs, make enhancements, etc.). As an example, let us
assume that a team starts working on a graphical game
played over a network. First, a graphics programmer
goes in and constructs the graphics framework. Then
an audio specialist injects code that is responsible for
game music and effects. A network specialist goes
over the code and makes it network enabled. Finally
an experienced software engineer checks the code
from beginning to end and inserts his own code that

TEMİZER

28

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

ensures that shared resources are accessed in critical
sections, semaphores and mutexes are used properly,
there are no memory leaks and possible deadlocks,
etc. Even if the whole game was developed by a single
programmer, it is evident that different chunks of code
serve different purposes.

Although the game software has many layers (i.e.,
there are different groups of statements that relate to
different game features), capturing, identifying and
documenting those layers is usually not easy. Most
programmers put their initials, a date and sometimes
the purpose of the code as a comment right above the
code piece that they inject, but this is usually not
enough (especially in big projects). One can also go
by investigating the CVS check-in logs and trying to
identify the layers, but this is a very tedious task. In
this case, some external system or tool that could keep
track of layers in the code for us would be very useful.

Now that we have gone over some problems inherent
in both forward (NL to CL) and reverse (CL to NL)
engineering applications, we are ready to present our
solution, TDS, in the following section.

4. THE SOLUTION: TDS

Temizer Description System consists of two pieces: a
meta-language and a suite of software tools that parse,
process and exploit the language as much as possible.

4.1 TEMİZER DESCRIPTION LANGUAGE

The meta-language is called Temizer Description
Language (TDL) and its main purpose is to describe
generic processes and units in a structured fashion.
The units usually correspond to functions, procedures
and/or methods of some software, but it is also
possible to define a unit to be something at a higher
level than the function level. Hence, for example, we
may first describe the functionality of some system in
TDL, then hierarchically describe sub-functionalities
to any desired level of detail, also in TDL.

The description text itself is in a natural language of
our choice. Therefore, the first step to create a TDL
description of a unit is to prepare a description of the
unit in our preferred natural language. After that, in
order to turn this description into a TDL description,
we tag the text piece by piece using TDL statements.
In other words, in order to make our NL description
understandable by computers TDL statements are used
to assign semantic meaning to all chunks. Hence the
resulting TDL description is actually a mixture of
TDL statements and regular text.

Before proceeding any further, let us give a simple
example that shows how a TDL description looks like.
A TDL description for the sample ‘Student’ function
given above is shown in Figure 6.

Student (Library Money)
{
 Branch
 { Condition [Library is open]
 Action [Check out math book] }
 { Condition [Library is closed]
 Action [Borrow friend's book] }

 Branch
 { Condition [There is enough money]
 Action [Have dinner at restaurant] }
 { Condition [There is not enough money]
 Action [Cook dinner at home] }
}

Figure 6. TDL description of function ‘Student’

The information that it conveys is as follows: The
TDL description in Figure 6 is for a unit named
‘Student’. The behavior of the unit is dependent on
two parameters, ‘Library’ and ‘Money’. There are two
sequential two-way branches within the unit body.
Each branch has its own condition and the associated
action taken in case the condition holds. Text pieces
enclosed within square brackets are the tagged natural
language pieces and they can be any expression of any
length that we want.

The formal definition of TDL in Backus-Naur Form
(BNF) notation is given in Appendix A. TDL is a
complete language (provides sequential execution,
branching and looping constructs) and it has only a
handful of carefully designed and self explanatory
statements. Therefore it is almost instantaneous to
learn TDL and it stays out of the way as much as
possible when applying it to tag regular text pieces.

Currently, there are only six statements (a total of nine
keywords) in TDL. Although not shown in the BNF
grammar, each TDL keyword also has a 1 or 2 letter
abbreviation (acronym) in order to make the language
even easier to use. Below are the statements, their
acronyms and the nature of text chunks that should be
tagged with them:

• ‘Action’, ‘A’: Some actual work, an action to be

taken. Could pretty much be anything depending
on the context.

• ‘Branch’, ‘B’: Denotes branching. After this
statement a list of one or more conditional
statements that describe a different branch of
execution follow. Each conditional statement has a
‘Condition’, ‘C’, and a list of statements. The
condition describes when that branch is to be
taken, and the statements tell what happens in that
case. For one-way branches (such as an else-less if
statement in C programming language), the only
conditional statement might also contain an

TEMİZER

29

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

optional ‘NegativeCondition’, ‘NC’, indicating
when the branch should not be taken.

• ‘Goto’, ‘G’: Denotes an unconditional jump to a
labeled statement within the same unit.

• ‘Invoke’, ‘I’: Calling another function or
procedure could be described by this statement.
Usually the number of arguments passed to an
invoked unit and the number of parameters of the
invoked unit are expected to be the same, and this
could be automatically verified when the TDL
description is processed by the tools in TDS.

• ‘Return’, ‘R’: Very much like the return statement
in C programming language. Could be used with
or without a data parameter.

• ‘Exit’, ‘E’: Like ‘Return’, denotes the end of
execution within a unit. Could also be assigned
special meanings such as the end of all processing
within the whole system.

In addition, each unit could be annotated with a
‘Note’, ‘N’, list and these correspond to any number
of arbitrary notes, very much like commenting in a
programming language.

TDL has many advanced features and one of them is
statement grouping. Each statement can optionally be
assigned a user defined group. For example, we may
designate a certain tag like ‘Safety’ and assign it to all
safety related statements within a TDL description of
some unit as shown in Figure 7.

…
Action <Safety> [Acquire semaphore]
Action [Read data from a shared resource]
Action <Safety> [Release semaphore]
Action [Use the data just read]
…

Figure 7. Statement grouping in TDL

In order to be practical, tagging pieces of texts in NL
should be as easy, quick and natural as possible. It
should never get in the way, and devour our attention.
Therefore, in addition to providing acronyms for each
keyword, TDL also comes in a few flavors. Currently
there are four dialects of TDL that we have developed
and been experimenting with:

Mini TDL (mTDL) contains the smallest set of
statements (‘Action’ and ‘Branch’) that are necessary
and sufficient for cause-effect type of descriptions. It
is very interesting to observe that with only two
statements one can actually describe the behavior of
many systems and generate software requirements
(using the tool suite) that conform to many standards
and recommendations such as DO-178B. It should be
noted that mTDL is not a complete language since

there are no statements to effectively describe
iterations (loops). However, it is still possible to hack
the language by describing the loops in a natural
language and putting them within the text portion of
‘Action’ statements.

TDL is the regular language as defined in Appendix
A. On top of mTDL, it also has statements that signal
the end of computation within a unit, unconditional
jump statements (to make iterations possible) and
statements that are explicitly aware of invocation of
other units by the described unit. Note that you can
describe unit invocation in mTDL inside the text of
‘Action’ statements, but the special invocation-aware
statements in regular TDL also make it possible for
some non-trivial verifications about interactions
between different units.

Extended TDL (xTDL) primarily adds statements that
could make it easier to describe loops and repetitions
inside the processes.

C-Like TDL (cTDL) slightly renames, modifies and
extends xTDL statements to make them have same or
similar names and syntax to C/C++ statements. For
example, in addition to ‘Branch’ statement, cTDL also
has ‘If’ and ‘Switch’ statements to make it easier to
prepare descriptions of C/C++ programs. Note that
with xTDL and cTDL, there is no additional power
injected into the regular language (TDL), rather, only
some syntactic sugar is added.

This document describes features of TDL in general,
and TDL refers to all TDL dialects (not just the regular
TDL dialect) unless otherwise specified.

TDL descriptions could also be embedded within a
program code as comments, thereby allowing the code
and its TDL description to be prepared, kept and
updated (preferably simultaneously) in the same file.
In fact, if a little care is taken to position the TDL
statements carefully within the program code, the tool
suite that we will describe can instrument the code for
structural coverage analysis. To give an example, in
Figure 8, we have a function in C programming
language that computes the quotient of its parameters.
The function also indicates whether the operation was
valid or not. In Figure 9, we have a TDL description
of the function. Note that the last TDL statement is an
‘Action’ which mentions about returning a value from
the function only in the text part. We could instead use
a ‘Return’ statement and it would be more appropriate,
but this actually shows how flexible TDL is, and how
powerful mTDL could be. And in Figure 10, we see
how both the function and its TDL description could
properly reside in the same file. By proper, we mean
carefully positioned to make instrumentation possible.
If instrumentation is not desired, then TDL statements
could be positioned anywhere in the file that the
programmer and/or the documenter wants.

TEMİZER

30

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

float divide (float numerator,
 float denominator) {
 float result = 0;

 if (denominator == 0.0)
 {
 printf("Division by 0 error\n");
 }
 else
 {
 printf("Valid operation\n");
 result = numerator / denominator;
 }
 return result;
}

Figure 8. Sample function ‘divide’

divide (numerator denominator)
{
 Action [Assign zero to local variable, result]

 Branch
 { Condition [Denominator is equal to 0.0]
 Action [Print error message] }
 { Condition [Denominator is not equal to 0.0]
 Action [Print valid operation message]
 Action [Store answer in result] }

 Action [Return value stored in result]
}

Figure 9. TDL description of function ‘divide’

/* This is a regular comment. Comments that contain TDL statements start with */
/* a special string such as '>' to be easily extractable. */

float divide (float numerator, float denominator) {
/*> divide (numerator denominator) { */

 /*> Action [Assign zero to local variable, result] */
 float result = 0;

 /*> Branch */
 if (denominator == 0.0)
 {
 /*> { Condition [Denominator is equal to 0.0] */
 /*> Action [Print error message] } */
 printf("Division by 0 error\n");
 }
 else
 {
 /*> { Condition [Denominator is not equal to 0.0] */
 /*> Action [Print valid operation message] */
 printf("Valid operation\n");
 /*> Action [Store answer in result] } */
 result = numerator / denominator;
 }

 /*> Action [Return value stored in result] */
 return result;

/*> } */
}

Figure 10. TDL embedded in source code as comments (highlighted in gray)

4.2 TDS SOFTWARE TOOLS

Once a piece of description is prepared in TDL, it
could be processed by TDS tools to generate various
data. In this section, we will briefly describe some of
the tools that we have developed and experimented
with. Our tools and the type of data that we were able
to generate are summarized in Figure 11. Since TDL
is very flexible and powerful, it is possible to create
various other tools that process the language in many

other ways to generate data for many purposes for
both forward and reverse engineering applications.

Code generators: In forward engineering applications,
we could start with software requirements recorded in
TDL, and use TDS code generators to automatically
generate code stubs and code templates for us in the
programming language of our choice. This has many
advantages including speed and automatically setting
up any required dependencies between source files.

TEMİZER

31

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

TEMİZER

32

Figure 12. Diagrams of ‘divide’ and ‘Student’

equirement generators: Descriptions in TDL

that information is also present in the given example.

Figure 11. TDS tools and generated data

Extractors: As mentioned, in addition to standalone
TDL descriptions, TDL can also be embedded within
comments in the same file that contains the source
code. Actually, it might be beneficial to prepare TDL
descriptions by typing just above the actual source
code lines. Then, when the code is modified, it would
be easier to keep the TDL description synchronized
for the developers. The extractors are tools that extract
TDL descriptions embedded in such source files.

Parsers: Parsers are tools that create parse trees from
TDL descriptions for further use by other TDS tools.
Parsers also perform many non-trivial validations,
consistency checks and verifications of integrity such
as identifying dead codes (the tasks that are never
executed due to the way the control flow is set up)
within a TDL description.

Pretty printers (Beautifiers): TDL is a free format
language just like C, C++ and Java. Beautifiers take
the TDL descriptions that are quickly scribbled and
format them nicely for later reference. Also, we may

use acronyms of statements in our TDL descriptions,
and we can instruct the beautifiers to blow them up to
full statement names in the output that they produce.

Programs in CL with commented
out TDL descriptions embedded

Diagram plotters: Activity diagrams, flowcharts, etc.
could easily be generated by TDS tools. For example,
the diagram on the left in Figure 12 is automatically
generated for the ‘divide’ function (with additional
documentation such as a legend of labels used, as
shown in Figure 13), and the diagram on the right is
generated for the ‘Student’ function. Our plotter
makes use of Graphviz tool [8], an open source graph
visualization software (we generate ‘dot’ files and
feed them to Graphviz to get the diagrams).

R
contain the semantic structure of the described units,
therefore just like diagrams, software documentation
or software requirements could easily be generated
automatically in any desired format such as text, rich
text, html, xml, etc. As an example, a TDL description
that consists of our samples ‘divide’ and ‘Student’
yields the documentation shown in Figure 13 when
processed by the respective TDS tools. It is also
possible to generate various measures of complexity
such as the number of branchings in each unit, and

TDL descriptions

Parsed TDL descriptions

Beautified TDL
descriptions

Activity diagrams,
flowcharts, etc.

Requirements,
documents, etc.

Test scenarios and
test code stubs

All data stored in
databases

Instrumented code

Extractors Instrumentation

Parsers

Pretty
printers

Diagram
plotters

Requirement
generators

Test data
generators

SCA results

Database
modules

Code
generators

Code stubs and
code templates

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

Unit name: 'divide'
Parameters: numerator, denominator

Total number of branchings in the unit: 1

List of all conditions (total 2)
C0. Denominator is equal to 0.0
C1. Denominator is not equal to 0.0

List of all actions (total 5)
A0. Assign zero to local variable, result
A1. Print error message
A2. Print valid operation message
A3. Store answer in result
A4. Return value stored in result

List of all possible transitions (total 2)
T0. C0 >> A0, A1, A4
T1. C1 >> A0, A2, A3, A4

Unit name: 'Student'
Parameters: Library, Money

Total number of branchings in the unit: 2

List of all conditions (total 4)
C0. Library is open
C1. Library is closed
C2. There is enough money
C3. There is not enough money

List of all actions (total 4)
A0. Check out math book
A1. Borrow friend's book
A2. Have dinner at restaurant
A3. Cook dinner at home

List of all possible transitions (total 4)
T0. C0, C2 >> A0, A2
T1. C0, C3 >> A0, A3
T2. C1, C2 >> A1, A2
T3. C1, C3 >> A1, A3

Total number of units in translation unit: 2
Total number of transitions in translation unit: 6

Databas rams,
quirements, tests, analysis results, etc.) could be

ate test
enarios that systematically cover all execution paths

ring the
esign of TDL, in addition to many considerations,

o over the same forward
nd reverse engineering practices mentioned in

e could
cord the requirements in TDL rather than in some

s in the
rogramming language of our choice. Having the

s create test scenarios from the

Figure 13. Generated documentation

e modules: All generated data (diag
re
labeled and stored in databases automatically.

Test data generators: TDS tools can gener
sc
within units. Automating such a task removes all
possible human errors from this otherwise very
difficult task. Given a TDL description, it is easy to

generate textual scenarios of the form: ‘In order to test
transition T0, make sure that the condition C0 holds.
Then invoke the unit and observe that actions A0, A1
and A4 are taken in the specified order’. Furthermore,
if proper software code pieces (that set a condition to
true or false, and that check if an action is taken or
not) are prepared and associated (by the help of TDS
tools) with TDL statements, then TDS tools could also
easily generate test code stubs for all test cases in the
test scenario. There is another method that describes
how to attach hooks [9] to functions, and that method
could also be used in conjunction with TDS tools to
vastly decrease the total testing time of big software
systems consisting of hundreds of functions.

Instrumentation and analysis modules: Du
d
great attention was also paid to have an instrumentable
language. If TDL descriptions are carefully embedded
in code as comments, the file can then be augmented
automatically with the programming language of our
choice, and many tasks such as requirement-to-code
traceability and some SCA tasks such as decision
coverage analysis could be automated. Furthermore, if
the source code is described densely enough in TDL,
most other SCA tasks such as statement coverage
analysis might also be automated.

5. ASSESSMENT OF TDS

Equipped with TDS, let us g
a
Section 3 and observe how TDS could change the way
that we interact with computers for the better.

 During our meetings with the customer, w
re
NL (by just throwing in some TDL statements) and
make the requirements semantically meaningful to the
computers. Then we could have TDS tools perform
some validations (to catch logical errors) and generate
diagrams. Quickly going over the diagrams with the
customer clears up many potential misunderstandings
and problems even at this early stage (requirement
specification phase of the software life cycle).

TDS tools then generate code templates for u
p
template creation done by computers saves us an
incredible amount of time and it also has many
advantages such as eliminating the possibility of
overlooking even the tiniest detail and automatically
setting up any necessary dependencies between
program files for us with 100% accuracy. The code
templates could also contain the very same TDL
requirements replicated and commented out for us,
and we then just fill in the necessary code to be done
with the coding phase.

Then we have TDS tool

TEMİZER

33

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

requirements. If we also feed in code pieces associated

een the requirements
nd pieces of software is already set up. There is no

tion is also available to us from the
ery beginning when we use TDL. We just instruct

ering tasks, TDS can help us
uickly capture the overall picture that shows how a

 of
ftware is also taken care of by the statement

e-art technology, we still do not
ave the luxury of communicating with computers in

uages. If computers were

a very promising
lution that enables computers to understand texts in

mputers in NL, all
spects of software development could be eliminated

rmation about NL is available at
ttp://en.wikipedia.org/wiki/Natural_language

ation

 is
http://attempto.ifi.unizh.ch/site/

t/

rtification”,
m

sal Yazılım Mühendisliği
po

with conditions, actions, etc. within the requirements,
then TDS tools will also generate a big portion, if not
all, of the test code for us. We then just fill in any
remaining parts, and our tests are now also ready to be
run against the developed software. And we will be
sure that not a single test case is omitted and our
software will be tested thoroughly. We can even have
TDS tools automatically instrument the code and
perform most or all of SCA, depending on the level of
detail of the TDL requirements.

To our surprise, traceability betw
a
need to perform anything else, because this process is
inherent when we utilize TDS. With the click of a
mouse button, it is possible to generate documents that
report which requirement was implemented by which
code fragment.

The documenta
v
TDS tools to turn and format the requirements into
user manuals and/or other necessary documentation.
Also, if any information that was not present in the set
of requirements is needed, they could be described in
TDL and turned into any form of documentation again
by the TDS tools easily.

As for the reverse engine
q
huge system works. We just need to locally analyze
pieces, prepare TDL descriptions for them, and then
feed them to TDS. The tools can generate diagrams
and reports that help us perceive the interactions
between small pieces and their internal workings.

Capturing layers when documenting a piece
so
grouping feature of TDL. We can optionally assign a
user defined group to some or all TDL statements as
shown in Figure 7. TDS tools can then treat statements
in different groups in special ways. For example, we
can have TDS tools skip ‘Safety’ related statements in
Figure 7 when generating some user manuals, or we
can have statements of a certain group be plotted in a
different color when generating diagrams, etc.

6. CONCLUSION

Even with state-of-th
h
our own languages. Contrary to the mysteriously
amazing job that the human brain does hundreds of
times each and every day (that makes us think how
easy verbal communication is), natural languages
actually contain ambiguities and are currently not
suitable to be processed by computers. Nevertheless,
there are and will always be huge scientific efforts to
make this dream come true.

The act of developing software is actually talking to
computers in their own lang
able to speak our language, then there would be no
need to develop any software and we would not need
any programming languages at all.

In this document, we presented
so
natural languages. The main idea is to assign semantic
meaning piecewise by tagging chunks with special
marking statements that enable computers to identify
how each chunk functions logically within the whole
text. Our study shows that by scattering around only a
handful of statements and some parentheses, it is
possible to let computers discover the structure of
natural language texts and construct inferences like
‘This text describes behavior of (one or more) units
and their interactions. There are certain conditions and
some related actions’. And the semantic structure
reveals to the computers which actions are taken when
certain conditions hold, thereby letting them figure out
the flow of ideas within the text.

When we use TDS to speak with co
a
(automated) by the help of a proper set of tools. The
quantitative performance that TDS provides could be
summarized as having months of work done in only a
couple of days without any human errors.

REFERENCES

[1] More info
h

[2] Centre for Language Technology, Macquarie
University, Sydney, Australia. More inform
about the state of the research is available at
http://www.ics.mq.edu.au/~rolfs/controlled-natural-
languages/

[3] More information about the Attempto Project
available at

[4] More information about PENG is available at
http://www.ics.mq.edu.au/~rolfs/peng/

[5] More information about CLCE is available at
http://www.jfsowa.com/clce/specs.htm

[6] More information about KANT is available at
http://www.lti.cs.cmu.edu/Research/Kan

[7] RTCA DO-178B, “Software Considerations in
Airborne Systems and Equipment Ce
Dece ber 1992, http://www.rtca.org/

[8] More information about Graphviz is available
at http://www.graphviz.org/

[9] Temizer S., “Yazılım Yapılandırma Teknikleri:
Temizer Sistemi”, İkinci Ulu
Sem zyumu, UYMS’05, pp. 305-313, Ankara,
September 22-24, 2005.

TEMİZER

34

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

APPENDIX A - Backus-Naur Form (BNF) Definition of TDL

Below is the syntax and grammar of TDL in BNF notation. Entities in regular font are non-terminal symbols.
Italic font denotes optional entities. Items in bold font are terminals. Most terminals are enclosed in single quotes
and need no further explanation. There are two non-terminal symbols that we need to define: IDENTIFIER is
equivalent to a C Programming Language identifier and TEXT is a piece of text in a natural language of our
choice enclosed in square brackets. The special non-terminal ‘TranslationUnit’ is the start symbol.

TranslationUnit := Unit
 | TranslationUnit Unit

Parameter := IDENTIFIER

ParameterList := Parameter
 | ParameterList Parameter

Note := ‘Note’ TEXT

NoteList := Note
 | NoteList Note

Label := IDENTIFIER ‘:’

Group := ‘<’ IDENTIFIER ‘>’

Statement := Action
 | Branch
 | Goto
 | Invoke
 | Return
 | Exit

LabeledStatement := Label Statement
 | Label LabeledStatement

StatementList := Statement
 | LabeledStatement
 | StatementList Statement
 | StatementList LabeledStatement

Action := ‘Action’ Group TEXT

Condition := ‘Condition’ TEXT

NegativeCondition := ‘NegativeCondition’ TEXT

ConditionalStatement := ‘{’ Condition NegativeCondition StatementList ‘}’

ConditionalStatementList := ConditionalStatement
 | ConditionalStatementList ConditionalStatement

Branch := ‘Branch’ Group ConditionalStatementList

Goto := ‘Goto’ Group IDENTIFIER

Argument := TEXT

ArgumentList := Argument
 | ArgumentList Argument

Invoke := ‘Invoke’ Group IDENTIFIER ‘(’ ArgumentList ‘)’

Return := ‘Return’ Group TEXT

Exit := ‘Exit’ Group

Unit := IDENTIFIER ‘(’ ParameterList ‘)’ ‘{’ NoteList StatementList ‘}’

TEMİZER

35

Using A Meta-Language To Bridge The Gap Between Natural Languages And Computer Languages

VITAE

Selim TEMİZER

In 1999, Selim Temizer received his B.S. degree from
the Department of Computer Engineering, Middle
East Technical University (METU). In 2001, he
received his M.S. degree in Electrical Engineering and
Co setts Institute of
Tec a with
his Ph . at th tificial
Int h interests
are artificial i ter vision, robotics,
rob techniques for mobile
rob ts d im la ave of
abs s since February 2004.

He ksan Sistem ve Bilgisayar
Tek jil zılım ve Elektronik
Sanayi A. rious high profile
pro OpenGL driver for
the ramic Cockpit
Displ ing Language
cou he Department of Computer
Engineerin o semesters.

He recent is military service in April
200 , he serving as a reserve officer
in The Scien sion Support Center (Bilimsel
Ka , kurmay
Ba

mputer Science at Massachu
hnology (MIT) nd continued his education

.D e same institute in The Ar
elligence Laboratory. Among his researc

ntelligence, compu
otic navigation, map-making
o an s u tion systems. He has taken a le
ence from his Ph.D. studie

 worked at Mete
nolo eri A.Ş. and Aydın Ya

Ş., leading teams on va
jects such as the design of an
 Joint Strike Fighter (JSF) F-35 Pano

ays. He offered a C Programm
rse as an instructor at t

g, METU for tw

ly completed h
7 w re he had been

tific Deci
rar Destek Merkezi BİLKARDEM, Genel

ığı . şkanl)

TEMİZER

36

