
A New Particle Swarm Optimization Method for the Path Planning of UAV in 3D Environment 

PEHLIVANOGLU 
1

 
 
 

A NEW PARTICLE SWARM OPTIMIZATION METHOD FOR THE 
PATH PLANNING OF UAV IN 3D ENVIRONMENT 

 
 

Y. Volkan PEHLIVANOGLU 
 

Turkish Air Force Academy 
Aeronautics and Space Engineering Dept. 

Yesilyurt/İstanbul/Turkey 
vpehlivan@hho.edu.tr 

 
Received: 13th January 2012, Accepted: 27th July 2012 
 
 
ABSTRACT 
Particle swarm optimization (PSO) method is relatively a new population-based intelligence algorithm and 
exhibits good performance in optimization problems. However, during the optimization process, the particles 
become more and more similar, and gather into the neighborhood of the best particle in the swarm, which 
makes the swarm prematurely converged possibly around the local solution. PSO technique can be augmented 
with an additional mutation operator that provides diversity and helps prevent premature convergence on local 
optima. In this paper, mathematical analysis of a basic PSO is reissued and a diversity concept is evaluated in 
commonly used PSO algorithms including constriction factor PSO, inertial weight PSO, Gaussian mutation 
PSO, and a new vibrational mutation PSO combining the idea of mutation strategy related to periodicity. New 
algorithm is tested and compared with selected PSO algorithms. The comparative experiments have been 
conducted on a wide range of nonlinear functions and a path planning problem of unmanned aerial vehicle 
(UAV) in three-dimensional (3D) terrain environment. The results give insight into how mutation operator 
effects the nature of the diversity and show that the addition of a mutation operator with a periodicity concept 
can significantly enhance the optimization performance.    
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3 BOYUTLU ORTAMDA YOL PLANLAMASI İÇİN KULLANILABİLECEK GELİŞMİŞ PARÇACIK 
SÜRÜ ENİYİLEME YÖNTEMİ 

 
ÖZET 
Parçacık sürü eniyileme yöntemi nispeten yeni bir nüfus temelli yapay zekâ algoritması olup, eniyileme 
problemlerinde oldukça iyi performans sergileyebilmektedir. Bununla berber eniyileme süreci esnasında sürü 
içersindeki parçacıklar gittikçe birbirlerine benzemekte ve çoğunlukla da sürü içersindeki en iyi parçacık 
etrafında öbeklenmektedirler. Bu öbeklenme ise eniyileme sürecini genel çözüm yerine yerel çözümle 
sonlandırabilmektedir. Bununla beraber yöntem ilave mutasyon operatörü kullanılarak geliştirilebilir ve bu 
sayede sürü içersindeki çeşitlilik arttırılarak yerel çözüm yerine genel çözüme ulaşılabilir. Bu makalede 
öncelikle yöntemin matematiksel temelleri gözden geçirilmiş, çeşitlilik kavramı üzerinde durularak çeşitliliğin 
bazı parçacık sürü algoritmalarındaki davranışları incelenmiştir. Ayrıca bu çözümlemeye dayalı olarak 
geliştirilen periyodik mutasyon uygulamaları yeni parçacık sürü yönteminde uygulamaya konulmuştur. 
Geliştirilen yeni yöntemin verimliliğini göstermek için değişik test fonksiyonları ile yol planlama problemleri 
çözülerek farklı algoritmalarla karşılaştırmalara gidilmiştir. Elde edilen sonuçlar periyodik mutasyon 
uygulamalarının etkilerini ve bu sayede elde edilen yüksek verimliliği teyit eder niteliktedir.   
 
Anahtar Kelimeler: PSO, Çeşitlilik, Periyodiklik, Yol planlaması.   
 
1. INTRODUCTION 
 
As in other evolutionary algorithms, Particle Swarm 
Optimization (PSO) method is a population-based 
stochastic optimization algorithm that originates from 

“nature”. Often these algorithms may require more 
cost function evaluations than comparable gradient-
based algorithms. They, however, provide attractive 
characteristics, such as ease of implementation for 
both continuous and discrete problems, efficient use 
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of large numbers of parallel processors, no 
requirement for the continuity in response functions, 
and more robust solution generations for searching 
global or near global solutions. PSO algorithms search 
the optimum within a population called “swarm.”  It 
benefits from two types of learning, such as 
“cognitive learning” based on an individual’s own 
history and “social learning” based on swarm’s own 
history accumulated by sharing information among all 
particles in the swarm.  Since its development in 1995 
by Kennedy et al. [1], it has attracted significant 
attention.  Most of the investigations on this topic are 
related to either the mathematical analysis focusing on 
how it works, or improving the PSO to get faster and 
more reliable solutions. The impetus for the latter is 
typically the trapping of the solution candidates to 
local optima, or the so-called premature convergence.  
 
An optimization algorithm prematurely converges to a 
local optimum if it is no longer able to explore other 
sections of the search space than the examined area 
and there at least another region exists that contains a 
solution superior to the currently discovered one. The 
main reason for the premature convergence might be 
the lack of diversity. Diversity is essential for a 
healthy search; and mutations are the basic operators 
to provide the necessary variety within a swarm. 
Apart from designing new mutation operators, 
researchers have put relatively less effort into 
investigating how to apply mutation operators during 
the process and determining what kind of diversity 
should be provided within the swarm in PSO process. 
Therefore, after having a close scrutiny of the 
diversity concept based on quantification and 
qualification studies, new mutation strategy and 
operator are improved to provide beneficial diversity 
within the swarm. This new approach is called 
vibrational PSO. They were applied to selected 
benchmark test functions and path planning problem 
of unmanned aerial vehicle (UAV) in three-
dimensional (3D) terrain environment. As 
demonstrated by these test cases, it is observed that 
new algorithms outperform the current popular 
algorithms.  
 
Definition of basic PSO 
 
Let s be the swarm size, d be the particle dimension 
space, and each particle of the swarm has a current 
position vector Xi, current velocity vector Vi, 
individual best position vector Pi found by particle 
itself.  The swarm also has the global best position 
vector Pg found by any particle during all prior 
iterations in the search space.  Assuming that the 
function f is to be minimized and describing the 
following notations in tth iteration, then the definitions 
are as follows: 
 

, , , , … , , ,  (1) 

, , 1,2, … ,  
 
where each dimension of a particle is updated using 
the following equations: 
 
 

, , 1  

, 1 , 1  

, 1 , 1   
(2) 

, , 1 ,  (3) 
  
In Eq. (3), c1 and c2 denote constant coefficients, r1 
and r2 are elements from random sequences in the 
range of (0, 1).  The parameter c1 controls the 
influence degree of a “cognitive” part of an 
individual, and c2 determines the effect of a “social” 
part of the swarm.  The personal best position vector 
of each particle is computed using the following 
expression:  
 

1 1
1  (4) 

 
Then, the global best position vector is found by  
 

min  (5) 
 
Improved PSO algorithms in the literature 
 
PSO may have some issues related to convergence 
speed, prematurely converged solutions, deficient 
accuracy or lack of diversity.  Numerous 
modifications have been proposed so far to overcome 
these issues [2]. These may be broadly divided into 
two categories as focusing on hardware or software 
improvements.  The hardware focus is related to 
parallel computing.  The software studies may be 
further classified as hybridization with other search 
algorithms, inspiration from other stochastic-based 
algorithms, rearranging and manipulating the 
reproduction descriptions mainly related to the 
velocity equation, parameter and neighborhood 
topology manipulations within the reproduction 
phase, and finally the swarm sizing and grouping. 
 
Since each particle’s cost function can be evaluated 
independently in the swarm, PSO is ideally suited for 
synchronized or unsynchronized execution on a 
cluster of computers in parallel. Integrating PSO 
algorithm with other search algorithms is called 
hybridization.  A common hybrid application is to use 
PSO with another population-based algorithm such as 
a genetic algorithm (GA).  Yet another technique is to 
use a gradient-based algorithm as an integrated part. 
Manipulating or rearranging Eq. (2) and Eq. (3) is an 
important part of algorithm improvements.  In these 
manipulations, the velocity equation is extended with 
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an extra term or shortened depending on the approach.  
Parameter re-descriptions constitute another bundle of 
modification packages. Since Shi et al. [3] suggested 
the use of an inertia weight (w) multiplying with the 
previous velocity in Eq. (2), the parameter number to 
be adjusted is increased to three. The inertia weight 
determines the effect of a previous velocity.  The 
common PSO parameters, w, c1, c2 may be constant, 
linearly or nonlinearly changeable, let’s say 
periodically, adaptively, chaotic or randomly 
changeable depending on the time or other reference 
such as cost function value, velocity, or metropolis 
criteria. Neighborhood topology originates from the 
selection of position vectors Pi and Pg.  In the original 
algorithm, the particle is going to be attracted by 
individual best position and global best position.  It 
means no other individual best position vectors will 
have an attractive effect to individual itself and also 
the best one will never be changed at that iteration. At 
this point, different neighborhood topology 
descriptions are introduced. Population itself is also 
studied in many different aspects. Dynamic swarm 
sizing or dividing the swarm into subgroups may be 
promising to solve some of the optimization 
problems. Inspirations from other stochastic-based 
algorithms such as GA, simulated annealing, or 
opposition-based learning algorithms are other 
popular methodologies to improve the basic PSO 
algorithm.  Commonly used GA reproduction 
operators including selection, crossover, elitism, and 
mutation can be deployed in PSO algorithm 
architecture. 
 
Among GA operators, mutation is the most utilized. 
Because the drawback of PSO is due to lack of 
diversity, which forces the swarm particles to 
converge to the position found so far which may be a 
local optimum. Without an effective diversity 
enhancing mechanism, the optimization algorithm 
may not be able to efficiently explore and exploit the 
search space. Mutation operators introduce new 
particles into a swarm by manipulating a current 
particle, thus adding diversity into the swarm and 
probably preventing stagnation of the search in local 
optima. However, the mutation application procedure 
brings some new adjustments to the algorithm such as 
the criteria of mutation applications, the position 
where mutation will be applied, and the selection of 
random probability distribution sequence. Mutation 
probability percentages, similarity and closeness to 
each other in terms of Euclidian distance, and 
describing diversity thresholds may be the criteria for 
mutation applications. Gaussian, Cauchy, Beta 
distributions, chaotic distribution based on logistic 
maps, or mixed types such as cloud distribution are 
possible random distribution sequences. Randomly 
selected current positions, velocities, or even 
individual best position and global best position 
vectors may be mutated [4-14]. However, elitism 

concept may be required in the case of mutating the 
individual best or global best position vectors. 
 
Although mutations provide diversity within the 
swarm, they may also cause peripheral stagnation 
search. Therefore, the type of mutation operator and 
its application strategy are important decision parts 
for the mutation applications. Apart from designing 
new mutation operators, researchers have put 
relatively less effort into investigating how to apply 
mutation operators during the process and 
determining what kind of diversity should be provided 
within the swarm in PSO process. Before moving 
forward to extensions of PSO, it would be better to 
reissue the basic PSO algorithm and its mathematical 
basis.         
 
2. MATHEMATICAL ANALYSIS OF PSO 

ALGORITHM 
 
Basic PSO  
 
Ozcan and Mohan [15] analyzed the updating Eq. (2) 
and (3) in an analytical way. Let’s reissue the 
analytical analysis to go a step further. For the sake of 
simple mathematical analysis, assume that c1.r1 and  
c2.r2 are constants which are equal to φ1 and φ2, 
respectively, and Pi (t), Pg (t) are also constants, such 
as pi, and pg, respectively.  Then, Eq. (2) and (3) 
become, 
 

, , 1  

, 1

, 1   
(6) 

, , 1 ,  (7) 
 
by getting xi,j(t-1) using Eq. (7) and substituting it into 
Eq. (6) we get the following particle path equation  
 

, 2 , 1  
, 2   (8) 

 (9) 
2  (10) 

 (11) 
 
This is a linear non-homogeneous second order 
differential equation.  The general solution of Eq. (8) 
can be derived by getting complementary and 
particular solutions. The resulted solution including 
initial boundary conditions can be found such that 
 

 (12) 
 
where 

0.5 2 ,
,  

2 2  
(13) 
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/  (18) 
 
This result may expose several different cases 
depending on α value, specifically the sum of φ1 and 
φ2 values. Value of η becomes a complex number for 
0< φ1 + φ2 <4. Converting  and τ into polar forms 
and substituting them into Eq. (12) we can obtain the 
following simplified equations: 
 

, sin cos  (19) 
/| |  (20) 

2 , , /  (21) 

,  (22) 
 
This is the general form for the particle path. We can 
make some assumptions such that there is only one 
dimension, p=pi=pg, φ1 + φ2= φ and 2>φ>0 or 4> 
φ>2, x(0)=x0, v(0)=v0. Then, the path of any particle in 
the swarm is directed by the following equations: 
 

sin cos  (23) 
2 / | 4 |  (24) 

 (25) 
| 4 |/|2 | (26) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Trajectories of a particle in a simplified 
PSO algorithm with Eq. (23) and Eq. (27), 

respectively. 
 

As Clerc and Kennedy [16] concluded, the particle as 
seen in discrete time “surfs” on an underlying 
continuous foundation of sine waves, and each time it 
jumps from one wave to another by using random 
numbers in the periphery of a random number 
distribution. At this point, let’s proceed with the Eq. 
(23) and add redefined Kronecker delta function as 
follows: 
 

1 , 1,2, …
0   (27) 

 
here f is the impulse period/frequency and An is the 
third amplitude which is either negative or positive. 
The resulting graphs for Eq. (23) and Eq. (27) with 
positive An and f with 50 can be plotted in Fig. 1. The 
purpose of adding an impulse depending on the time 
frame is to catch the big wave, or in other words, to 
extend the search domain from one local area to 
another local area for the particle. The effect of an 
impulse will be analyzed in further sections. 
 
Improved PSO algorithms 
 
When a new algorithm is proposed into literature, it is 
expected to be compared with the current state of art 
algorithms on commonly used benchmark test 
functions. Obviously, it is difficult to make a fair 
comparison, because each algorithm may have 
peculiar tuning, which results in important differences 
on the cost functions. However, well-defined and 
straightforward algorithms may provide a relatively 
good inference. Three well known PSO algorithms are 
selected as comparative optimization algorithms. 
These are constriction factor PSO (c-PSO), linearly 
decreased inertial weight PSO (w-PSO), and Gaussian 
mutation based PSO (g-PSO).  
 
c-PSO The particle swarm with a constriction factor 
is introduced by Clerc [16], which investigated the 
use of a parameter called the constriction factor. With 
the constriction factor K, the particle velocity and 
position dimensions are updated via: 
 

, , 1 , 1
, 1 , 1 , 1   (28) 

2
2 4

 

, 4 
, , 1 ,  

(29) 

 
A particularly important contribution of this factor is 
that if it is correctly chosen, it guarantees the stability 
of PSO without the need to bind the velocities. 
Typically, values of 2.05 are used for c1 and c2, 
making ψ is equal to 4.1 and K is equal to 0.729.   
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w-PSO Shi and Eberhart [17] introduced the idea of a 
time-varying inertia weight. The idea was based on 
the control of the diversification and intensification 
behavior of the algorithm. The velocity is updated in 
accordance with the following expressions: 
 

, , 1  

, 1 , 1  

, 1 , 1   
, , 1 ,  

(30) 

 
The inertia weight, w, is decreased linearly starting 
from initial point, wini, and ending to last point, wend, 
related to maximum iteration number, T. Normally, 
the starting value of the inertia weight is set to 0.9 and 
the final to 0.4. However, we tuned them to [0.6, 0.2] 
range for better performance.  
 
g-PSO First Gaussian mutation based PSO algorithm 
is introduced by Higashi and Iba [4], which use a 
mutation operator that changes a particle dimension 
value using a random number drawn from a Gaussian 
distribution. A particle is selected for mutation using a 
mutation rate that is linearly decreased during a run. 
However, it is improved by several researchers. Pant 
et al. [18] developed Gaussian mutation operator 
application technique for updating the position of the 
swarm particles. The mutation operator is activated 
only when the diversity of the swarm becomes less 
than a certain threshold, dlow. The velocity is updated 
via Eq. (30) in addition to the following criteria: 
 

   
 , , 1   (31) 

1
, 1 1  (32) 

1 , 1 /  (33) 

 
where ξ is the scaling factor, rand is a random number 
generated by Gaussian distribution. The diversity 
description given by Eq. (32) is based on the 
differences between the average dimensional position 
and the current dimensional particle positions. 
 
v-PSO. The traditional general form of the mutation 
which was applied in the previous PSO algorithm can 
be written as xi,j(t) = g(xi,j(t)); where g is the mutation 
operator providing the offspring vector. Instead of this 
strict form of a mutation operator it can be described 
including mutation strategy as 
 

, , ,  (34) 

 
where F is the generalized mutation function, fr is a 
user defined application frequency. Right after the 
elitism application originating from GA, in every fr -1 
period of the generations applying the mutation 
operator to all particle dimensions of the whole 
swarm, individuals in the population spread 
throughout the design space.  Mutation operator is 
given by 
 

, , 1 0.5  
1,2, … ,  
1,2, … ,  

1 , 1,2, …
0  

(35) 

 
where A is a user defined scale factor called an 
amplitude and it may be selected as a fixed number or 
computed during the iterations, rand is a real random 
number specified by random number generator in 
accordance with N[0, 1]. In the applications Gaussian 
probability density function is used. However other 
density functions can also be used in Eq. (35). The 
aim of designing such a mutation strategy is to catch 
the big wave for escaping from local traps and getting 
the correct search pattern.  The velocity and the 
positions are updated via Eq. (30) except the iterations 
corresponding to the mutation period.   
 
Comparison of c-PSO and v-PSO in a simple case 
 
Before moving to test bed of benchmark functions it 
may be beneficial to test c-PSO and v-PSO algorithms 
in case of 3D multi-modal Rastrigin test function 
which is given in Table 1. The experimental set up for 
c-PSO is given as; S is equal to 5, G is equal to 200, 
and for v-PSO; S is equal to 5, G is equal to 200, f is 
equal to 10, A is equal to 5, elite count is equal to 3, c1 
is equal to 1.5, c2 is equal to 2, w is equal to 0.05. 
Both algorithms are run 40 times and the results are 
averaged. The resulted plots can be seen in Fig. 2 and 
3. We can see the efficiency of periodic mutations by 
looking at averaged best/swarm fmin values versus 
generations in Fig. 2. The best value resulted by c-
PSO at generation with 200 can be provided by v-
PSO at the generation by 70. The accuracy at the end 
of maximum generation for c-PSO is about 100 
grades. However the accuracy given by v-PSO is 
about 10-1 grades. The other interesting point is the 
fluctuation of average swarm objective function 
values related to mutation frequency. Although the 
dispersion of the swarm is high at the start of each 
period the swarm is getting closer to global optimum 
at the end of the periods.      
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Figure 2. Averaged elite/swarm objective function changes versus generations for c-PSO and v-PSO 

algorithms. 
 

The swarm’s trajectories in 4-dimensional domain can 
be seen in Fig. 3. In plots the x axis of particle is 
ridden on the generations (g) with a certain range. 
Totally 40 runs including 40,000 particle positions are 

plotted in each figure. The dispersions of the particles 
at each mutation period are clearly observed during 
the generations. The dispersions are getting smaller 
while the iterations are getting forward.  

 

  
Figure 3. Swarm particle trajectories in 4-D domain for c-PSO and v-PSO. 

Comparison of improved PSOs based on diversity 
and kinetic energy 
 
The description of swarm diversity may be based on 
the difference between the average dimensional value 
and particle’s dimensional values or between the elite 
individual in the swarm and other particle’s 
dimensional values. The selected diversity is given by 
Eq. (32). Kinetic energy is constructed via particle’s 

velocity values and it is given by Eq. (34). It is 
designed to indicate swarm energy required to escape 
from the tackles.  
 

,

2  (36) 
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The swarm diversity and kinetic energy changes 
versus time domain for 20 dimensional Rastrigin 
function problem are plotted in Fig. 4 for each 
selected PSO algorithm. The swarm size and 
maximum iteration number are fixed to 20 individuals 
and 10,000 generations, respectively for each 
algorithm. All algorithms are run 40 times and the 
results are averaged. The diversity of c-PSO linearly 
decreases during the generations and after a while 
swarm becomes unique and the kinetic energy of the 
swarm is also decreased to low band periphery. The 
diversity of v-PSO is also decreased during the 

iterations but having a difference. The degradation is 
smaller than c-PSO and the diversity band is big 
enough to extend the search ability of the swarm. The 
similarity between w-PSO and g-PSO is clearer until a 
certain iteration step. This is normal because g-PSO is 
the same as w-PSO until the diversity value decreases 
to threshold diversity value. At that time the Gaussian 
mutation operator takes role and keeps the diversity in 
a certain levels. The same level stability can be seen 
in kinetic energy change. w-PSO loses its diversity 
capability later than c-PSO. 

 

 

 
Figure 4. Diversity and kinetic energy change versus generations for selected PSO algorithms. 

 
Inference with wavelet analysis in g-PSO 
 
Describing a threshold value for the diversity has a 
big effect on the swarm diversity. However it may 
cause some concerns related to convergence. The 
swarm diversity is directly related to the threshold 
value. Small threshold value may prevent the swarm 
having big enough diversity to escape from local 
optima. On the other hand, larger threshold diversity 
may result in divergence from the right path. However 
it brings some important points such as periodicity 
and amplitude. The diversity change versus 
generations for different threshold diversity values 

can be seen in Fig. 5.  The selected threshold values 
are 10-6, 10-4, 10-1, and 100. According to the plots the 
threshold diversity value controls the significance of 
mutation application and the amplitude of the swarm. 
While the threshold diversity increases the amplitude 
decreases, the periodicity starts earlier. This feature 
has a direct effect on the averaged best individual 
value. Fig. 6 shows the relationship between averaged 
best individual values versus threshold diversity. The 
relationship between diversity threshold and averaged 
best individual is nonlinear. This is because the 
threshold value has a double effect on both mutation 
application and amplitude at the same time.  
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Figure 5. The diversity changes versus generations for different diversity thresholds. 
 
 

 
Figure 6. Averaged best individual and threshold 

diversity changes in g-PSO algorithm. 
 
The significance of mutation application can be 
searched in more details. The diversity change for the 
first threshold value (10-6) can be analyzed by using 
db4 wavelets at 5-level [19]. The resulted discrete 
wavelet transform for the diversity series can be seen 
in Fig. 7. Plot 7 shows that the main signal caries 
periodic signal and noises. The periodicity is clearly 
seen after 2000th iteration in the approximation signal 
which caries low frequency signals and has 90 
percentages of the whole signal power and on the 
wavelet coefficients matrix.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)  
 
 

 
 
 
 
 
 
 
 
 
 
 

(b)  
 
Figure 7. The wavelet analysis of the diversity signal 

in g-PSO algorithm (a) coefficient matrix, (b) time 
series. 

 
The deficiency of g-PSO originates from the double 
effect of threshold diversity. However it brings two 
important concepts which are periodicity and 
amplitude change related to generations. The 
description of v-PSO given in Eq. (35) pacifies the 
deficiency of Gaussian mutation application and 
facilitates the algorithm to control the periodicity and 
amplitude with different parameters which are the 
frequency and the amplitude.   
 
3.  APPLICATIONS AND RESULTS 
 
At first, v-PSO and the comparative PSO algorithms 
are tested using test functions including unimodal and 
multi-modal benchmark functions. Secondly, v-PSO 
algorithm and the best comparative PSO algorithm, g-
PSO, are applied to path planning problem of UAV in 
3D terrain environment.   
 
Comparative results using test functions 
 
The selected test bed is given in Table 1. The test 
procedure includes two different bundles. The first 
bundle contains the algorithm sensitivity to different 
function dimensions as D is equal to 10, 20, and 30 
with fixed generation size as 10,000 and fixed swarm 
size as 20. The second bundle contains the behaviors 
of the algorithms related to different swarm sizes such 
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as 10, 20, and 30 with fixed dimensions as D is equal 
to 30, and fixed function evaluations of 200,000. All 
algorithms are run 100 times and the results are 
averaged. Peculiar settings are the following: c1 and c2 
are equal to 2.05 for c-PSO; c1 and c2 are equal to 2; 
wini and wend are equal to 0.6, 0.2, respectively for w-
PSO; c1 and c2 are equal to 2, wini and wend are equal to 
0.6, 0.2, respectively, Dlow is equal to 0.5 for g-PSO; 
c1 is equal to 1.5, c2 is equal to 2, w is equal to 0.05, fr 
is equal to 10, A is equal to 1, elite count is equal to 3 
for v-PSO. 
 
Fixed iteration rate-fixed swarm size 
 
The resulting values are shown in Table 2. The 
performance of four algorithms with different 
dimensions is tabulated in terms of means and 
averaged CPU times for six test functions. The test 
runs were executed on an off-the-shelf laptop 
computer that has Intel Centrino Duo processor with 
64-bit accuracy. The mean value is calculated in 
accordance with 95% confidence interval ratio. The 
best results among the four algorithms are shown in 
bold. The averaged global best individual values 
versus generations for D is equal to 30 are shown in 
Fig. 8.  
 
The best performance belongs to v-PSO in all test 
cases. The accuracy and the efficiency superiorities of 

v-PSO can be clearly seen in Fig. 8. It converges 
within 102 or 103 generation number to the acceptable 
objective function values. However, the other 
algorithms converge within 104 generation number to 
the same or worse objective function values. 
 
Fixed function evaluation rate-fixed dimension 
rate 
 
The averaged best function values versus swarm sizes 
which are 10, 20, and 30 for D which is equal to 30 
are shown in Fig. 9 and in Table 3. The mean value is 
calculated in accordance with 95% confidence 
interval ratio. The best results among the four 
algorithms are shown in bold. The similar results are 
observed comparing with the previous analysis. v-
PSO has the best performance in all function 
optimizations. Fig. 9 shows an interesting result in the 
relationship between the performance and the swarm 
size. Generally, v-PSO has similar performances for 
all swarm sizes. It means v-PSO provides a better 
efficiency in lower swarm sizes. However, the other 
algorithms’ performances significantly depend on the 
swarm size. Typically, larger swarm size means better 
performance for them except v-PSO.  The main 
reason for this result is that v-PSO provides enough 
diversity within the swarm even in a low swarm size. 
The other algorithms need a larger swarm size to have 
enough diversity in the swarm. 

 
 

Table I: Definition of test functions. 

f Test 
function f(x) search range x* f(x*) 

f1 Ackley 20 exp 0.2
1

exp
1

cos 2

20  

[-30, 30]D [0,0,…,0] 0 

f2 
Cosine 
mixture 0.1 cos 5  [-1, 1]D [0,0,…,0] -0.1n 

f3 Exponential exp 0.5  [-1, 1]D [0,0,…,0] -1 

f4 Griewank 1
1

4000 cos
√

 [-600, 600]D [0,0,…,0] 0 

f5 Rastrigin 10 10cos 2  [-5.12, 5.12]D [0,0,…,0] 0 

f6 Schwefel 418.9829 sin | |  [-500, 500]D [420.9687…,420
.9687] 0 
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 v-PSO
g-PSO
w -PSO
c-PSO

Table II: The first test bundle results. 
 c-PSO w-PSO g-PSO v-PSO 

f D mean tCPU Mean tCPU mean tCPU mean tCPU 

f1 
10 0.1040±0.0659 1.612 2.5e-15±9.9e-17 1.5219 3.258e-4±4.5e-5 1.634 1.84e-15±2.9e-16 1.717 
20 1.7684±0.2544 1.964 0.0231±0.0322 1.7922 0.0013±1.8e-4 1.95 2.84e-15±1.5e-16 1.957 
30 3.8334±0.3806 2.406 0.0266±0.0374 2.163 0.0027±3.7e-4 2.307 4.93e-15±3.4e-16 2.296 

f2 
10 -0.9483±0.0158 1.557 -0.9970±0.0041 1.4688 -0.9998±3.1e-5 1.568 -1±0 1.644 
20 -1.533±0.0485 1.938 -1.9512±0.0162 1.74 -1.9979±2.1e-4 1.883 -2±0 1.921 
30 -2.0261±0.0692 2.318 -2.8167±0.0286 2.11 -2.9942±5.1e-4 2.255 -3±0 2.26 

f3 
10 -1±2.2e-18 1.468 -1±0 1.371 -1±1.5e-6 1.422 -1±0 1.55 
20 -1±2.15e-17 1.78 -1±1.7e-17 1.593 -0.9999±9.2e-6 1.625 -1±3e-18 1.771 
30 -1±5.14e-14 2.136 -1±5.4e-18 1.877 -0.9998±1.9e-5 1.901 -1±1e-17 2.039 

f4 
10 0.0915±0.0093 2.174 0.0742±0.0075 2.075 0.0549±0.0046 2.125 0.0209±0.006 2.251 
20 0.0586±0.0478 2.577 0.0291±0.005 2.396 0.0222±0.0041 2.483 0.0026±0.002 2.553 
30 0.2238±0.1616 3.043 0.0153±0.0035 2.835 0.0166±0.004 2.946 8.8568e-4±0.001 2.991 

f5 
10 8.6760±0.7852 2.133 5.1837±0.5259 2.055 0.0398±0.0389 2.111 0±0 2.21 
20 38.4849±2.1134 2.635 23.7496±1.6545 2.483 2.8259±0.6476 2.537 0±0 2.621 
30 84.6011±4.6683 3.146 53.5088±2.5935 3.004 14.1188±2.24 3.033 5.6843e-16±1e-15 3.068 

f6 
10 836.04±61.8981 2.732 842.7311±59.72 2.185 815.1561±64.3 2.232 620.8131±50.4 2.371 
20 2.375e+3±112.69 4.222 2.1577e+3±101 3.093 2.1798e+3±120.9 3.021 1.3384e+3±68.5 3.128 
30 4.146e+3±177.38 5.451 3.62e+3±158.35 3.945 3.47e+3±149.3 3.781 2.1395e+3±103.3 3.971 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Averaged best function values versus generations for test functions. 
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Table III: Second Test Bundle Results. 

f P c-PSO w-PSO g-PSO v-PSO 
mean Mean Mean mean 

f1 
10 9.412±0.6149 1.5913±0.4344 0.0803±0.096 4.583e-15±3e-16 
20 4.6684±0.4644 0.0902±0.067 0.0026±3.7e-4 4.9738e-15±3e-16 
30 2.2994±0.2776 0.0116±0.023 0.0027±3.9e-4 5.0449e-15±3e-16 

f2 
10 -1.4844±0.0918 -2.6113±0.05 -2.996±3.3e-4 -3±0 
20 -1.9673±0.0767 -2.833±0.03 -2.9937±6.1e-4 -3±0 
30 -2.1842±0.071 -2.8714±0.03 -2.9928±7.3e-4 -3±0 

f3 
10 -1±8.8e-5 -1±1e-17 -0.9999±1e-5 -1±1e-17 
20 -1±2e-13 -1±3e-18 -0.9998±1.74 -1±1e-17 
30 -1±1e-16 -1±2e-18 -0.9997±2e-5 -1±1e-17 

f4 
10 0.8154±0.275 0.0339±0.01 0.0223±0.005 0.0016±0.002 
20 0.1233±0.064 0.0167±0.003 0.0155±0.003 0.0011±0.001 
30 0.0431±0.01 0.0153±0.003 0.0153±0.003 5.9021e-4±0.001 

f5 
10 104.3609±5.25 69.9753±3.63 12.1629±2.31 0±0 
20 81.8152±3.98 52.8919±2.42 13.5722±1.77 1.1369e-15±1e-15 
30 73.6367±3.7 44.8626±2.45 15.4020±1.98 5.6843e-16±1e-15 

f6 
10 4.6531e+3±142 3.9629e+3±161 3.6985e+3±194 2.2246e+3±123 
20 3.978e+3±149 3.5837e+3±147 3.5119e+3±188 2.1888e+3±110 
30 3.7372e+3±140 3.4045e+3±134 3.5136e+3±152 2.2258e+3±107 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Averaged best function values versus swarm sizes for selected test functions. 
 
Path planning problem 
 
The number of applications that consider the use of 
autonomous UAVs is increased for civilian or military 
purposes. There are many activities that must be 

carried out by a UAV system to enable the execution 
of the autonomous navigation. These activities are 
mapping and modeling the environment, path 
planning, and flight control systems. Path planning is 
one of the most important problems in the navigation 
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process. Its objective is to find out the optimal flight 
path starting from the departure location and ending in 
an arrival location in the proper duration during which 
UAV is able to accomplish the pre-arranged task and 
avoid the hostile threats. The selection of an 
appropriate algorithm in every stage of the path 
planning process is very important. Optimal path 
planning heavily relies on time consuming 
optimization techniques such as numerical 
computation. It is usually solved offline based on the 
known information before takeoff. To demonstrate, v-
PSO and g-PSO are applied and compared in path 
planning problems in a 3D sinusoidal terrain model. 
 
Path representation 
 
Bezier curves [20] have been widely adopted when 
computing smooth, dynamically feasible trajectories 
for UAVs. A smooth path is an important feature for 
UAV flight dynamics because aerial vehicles cannot 
fly on line segments like land vehicles. Bezier curve is 
defined by 
 

1 ,  

1 ,  

1 ,  

! ! 1 !⁄  

(37) 

 
where d is the step size parameter of the curve whose 
values vary uniformly between [0,1], n is the number 
of control points, (x1,i, x2,i, x3,i) are the coordinates of 
the ith control point which define the path coordinates 
(x1(d), x2(d), x3(d)).   
 
Terrain modeling 
 
The function of trigonometric based terrain modeling 
is given by 
 

, sin sin
cos
cos
sin
cos  

(38) 

 
where bi are real constant numbers. The terrain model 
is depicted in Fig. 10. Sinusoidal terrain model is a 
mathematically continuous model.   

 
 

 
 

Figure 10. Sinusoidal terrain model. 
 
Fitness function 
 
The evaluation function of an individual measures the 
cost of a candidate path. The fitness function is 
designed to accommodate three different terms: 
minimize the distance flown, maintain a smooth 
trajectory preventing sharp turns, and satisfy the 
clearance providing the safe distance for UAV from 
terrain. We have proposed a linear combination of 
these three factors. The general description of the 
optimization problem is given below 
 

min  (39) 

subject to  
 

 
 

 

 
where Gi is the term connected to various concerns, ai 
is weighting constant, and AL is the altitude limitation 
for UAV. The first concern is the length of the curve 
G1 and is calculated by the given expression 
 

, , , ,

, ,
/  

(40) 

 
where dn is the curve discretization number; x1,i, 
x2,i,and x3,i are the discrete coordinates of the path 
curve. The second concern, G2, is the passing ratio of 
the curve through the terrain boundary and is 
calculated by the given expression: 
 

, , 1 
(41) 

 
where Sd is a safe distance determined by user, x3

curve 
is the discrete path curve coordinate, and x3

surface is the 
terrain model coordinate. This expression penalizes 
the curve that passes through the solid boundary. So, 
the penalty is proportional to the number of 
discretised curve points located under the solid 
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surface. The third concern, G3, is the curvature angle 
ratio of the curve which is calculated by the given 
expression: 
 

 , , 1 (42) 

 
where θi,i+1 is the angle between the extension of the 
line segment connecting Bezier control points i and 
i+1, θS is the safe turning angle determined by user 
for the UAV. This concern is designed to prevent the 
aerial vehicle from exceeding the lateral and vertical 
acceleration limits, because the flight envelope 
determines the maximum radius of turns for flying 
objects. The weight constants, ai, are determined 
experimentally. In test cases, a2 is selected as a high 
number.  
 
Test case and results 
 
The test case is given in Fig. 11. The mission of UAV 
is to depart from the departure point and arrive at the 
arrival point under certain conditions. Two particle 
swarm algorithms are tested in this case. These 
algorithms are v-PSO and g-PSO, and the features of 
these algorithms are tabled in Table 4. The data for 
fitness function is given in Table 5. 
 

Table IV: Particle swarm algorithms’ features. 
Algorithm c1 c2 

g-PSO 2 2 wini 0.6 
wend 0.2 

dlow ξ 
5 0.1 

v-PSO  2 2 wini 0.6 
wend 0.2 

fr A 
20 0.1 

 
Table V: Fitness function data. 

SD θT AL a1 a2 a3 
0.05 60º 5 5 10 1 

 
All algorithms are run 30 times. The averaged best 
individual fitness function values versus generations 
are plotted in Fig. 12. According to this figure, v-PSO 
outperformed g-PSO. v-PSO reaches the fitness value 
of 458 at 318th generation, while g-PSO reaches the 
same value at 500th generation. Therefore, v-PSO 
decreases 36% the required generation number.  

 

 
Figure 11. An example path constructed by v-PSO. 

 
Figure 12. The fitness values of algorithms versus 

generations. 
 

4. CONCLUSIONS 
 
We have re-observed that in the general case, particle 
“surfs” on sine waves in nature. A particle seeking an 
optimal location attempts to catch another wave 
randomly, manipulating its frequency and amplitude. 
However manipulations are not enough to catch the 
big wave directing the global solution. During the 
optimization process, the swarm looses its diversity 
and the particles become more and more similar, and 
gather into the neighborhood of the best particle in the 
swarm, which makes the swarm premature 
convergence probably around the local solution. 
Although mutation applications provide diversity in 
the swarm diversity without continuous impetus 
disappears during the generations. A mutation with a 
separate amplitude and periodicity seems to help the 
particle to “jump” onto another big wave. Vibrational 
PSO is a good example to catch the big wave toward 
the global optimum. Its efficiency is observed in 
multi-modal test functions and a path planning 
problem. v-PSO is usually decreased the required 
objective function evaluations down to %65 or less 
depending on the function nature and also gives more 
accurate results than other comparative algorithms. 
Current selected algorithms seem to be dependent on 
the population size. However v-PSO is almost 
independent from population size. It shows similar 
performances although the population size is 
increased. The other algorithms increase their 
performances when the population size is increased 
under the same problem conditions. This is because 
the population size directly affects the diversity in the 
population and these algorithms pasifize the lack of 
diversity within the big sized populations. v-PSO does 
not need more individuals because the periodic 
mutations provide enough diversity in the swarm. 
However, the diversity provided by vibrational 
mutation operator is a global random diversity. In 
some cases this type of diversity may not be enough 
to catch the correct wave. In addition to global 
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random diversity the local random diversity 
combining with elite particle in the swarm may help 
fast convergence.  For further step local diversity in 
terms of randomness and controlled phenomena 
promises faster and more accurate results in long but 
real optimization processes.    
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