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Abstract 
 

In this study, a production planning problem in which a producer 
remanufactures returned products into serviceable products besides 
manufacturing serviceable products is considered. The main challenge in this 
planning problem is the uncertain demand for the serviceable products and the 
uncertain returns of the used products. The probability distributions of the 
uncertain demand and uncertain returns are not known. Only the means of 
uncertain parameters and maximum deviations from these means are known or 
can be estimated. The problem is to determine the quantity of serviceable 
products that are manufactured, the quantity of returned products that are 
remanufactured, and the quantity of returned products that are disposed over a 
multi-period planning horizon such that total cost composed of production, 
inventory and disposal costs is minimized. A new robust linear programming 
model that yields a feasible production-disposal policy regardless of the 
realization of demand and returns is proposed and compared with a robust linear 
programming model existing in the literature. The computational results reveal 
that the proposed model significantly outperforms the one existing in literature in 
terms of the actual cost savings. 

 

Keywords: Production planning, uncertain demand and returns, robust 
optimization, linear programming. 

 

Öz 
 

Belirsiz Talep ve Geri Dönen Ürünler Durumunda Yeniden Üretim İle 
Üretim Planlaması 

 

Bu çalışmada, bir üreticinin satılabilir ürünleri üretmesi yanında, geri dönen 
ürünleri yeniden üreterek satılabilir ürünlere dönüştürdüğü bir üretim planlama 

                                                 
* This work was supported by the Campus Research Fund of Middle East Technical 
University, Northern Cyprus Campus under Grant BAP-SOSY-12-YG-3. This support 
is gratefully acknowledged. 
†Assoc.Prof.Dr., Middle East Technical University, Northern Cyprus Campus, Business 
Administration Program, Kalkanlı, KKTC 99738, solyali@metu.edu.tr 



276                                                                                                    Oğuz SOLYALI 
 

 

problemi ele alınmıştır. Bu planlama problemindeki en büyük zorluk, satılabilir 
ürünler için talebin belirsiz olması ve  geri dönen ürün miktarlarındaki 
belirsizliktir. Belirsiz talep ve geri dönen ürün miktarlarındaki belirsizliğin 
olasılıksal dağılımları bilinmemektedir. Bu belirsiz parametrelerin sadece 
ortalamaları ve bu ortalamalardan azami sapmaları bilinmekte veya tahmin 
edilebilmektedir. Problem, toplam üretim, envanter ve imha maliyetlerini 
enazlayacak şekilde, planlama ufku boyunca, üretilecek satılabilir ürünlerin 
miktarının, yeniden üretilecek geri dönen ürünlerin miktarının ve imha edilecek 
geri dönen ürünlerin miktarının belirlenmesidir. Talep ve geri dönen ürün 
miktarlarının gerçekleşmelerinden bağımsız olarak, olurlu bir üretim-imha 
politikası veren, yeni bir gürbüz doğrusal programlama modeli önerilmekte ve 
literatürde varolan bir gürbüz doğrusal programlama modeli ile 
karşılaştırılmaktadır. Sayısal sonuçlar, önerilen modelin, literatürde varolan 
modelden gerçek maliyet tasarrufu olarak önemli derecede üstün olduğunu 
göstermektedir. 

 
Anahtar Sözcükler: Üretim planlama, belirsiz talep ve geri dönen ürünler, 

gürbüz eniyileme, doğrusal programlama. 
 
 

INTRODUCTION 
 
Remanufacturing, which can be defined as the activity of transforming 

returned products into serviceable (i.e., sellable) products, has recently become 
popular in several manufacturing industries due to concerns on sustainability, 
environmental protection, as well as cost saving opportunities in production. A 
number of successful companies from different industries (e.g., Dell, General 
Motors, Kodak, Xerox) adopted remanufacturing as a part of their usual 
production planning activity (Akçalı, Çetinkaya, 2011). For example, BMW 
considered reuse of end-of-life cars, Kodak remanufactured one-off cameras, 
and Xerox recovered toner cartridges, besides their regular manufacturing 
activities (Wei et al., 2011). 

 
There is certainly a need for producers to jointly consider their 

manufacturing and remanufacturing activities in order to take full advantage of 
cost savings in production and to protect the environment by lowering the 
consumption of natural resources. Although there are many studies jointly 
considering manufacturing and remanufacturing activities, these studies assume 
either a fully deterministic setting (e.g., Helmrich et al., 2014; Li et al., 2014) in 
which the demand for the serviceable products and the quantities of returned 
products are known with certainty or a stochastic setting (e.g., Naeem et al., 
2013; Shi et al., 2011) in which the probability distributions of the demand for 
the serviceable products and the quantities of returned products are known. For 
a recent review on the integrated manufacturing and remanufacturing planning 
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with both deterministic and stochastic environments, refer to Akçalı and 
Çetinkaya (2011). In real-life, demand and product returns are uncertain, and 
probability distributions of these two uncertain parameters are mostly not 
available (Wei et al., 2011). Thus, there is a need to consider uncertain demand 
and product returns while deciding on the quantities to manufacture, the 
quantities to remanufacture from returned products and the quantities of 
returned products to dispose in each period (i.e., day, week or month). In this 
study, the production planning problem with remanufacturing under uncertain 
demand and returns is addressed using state-of-the-art linear programming (LP) 
models and robust optimization methodologies. 

 
Robust optimization (RO) is a powerful tool for optimization problems 

with uncertain parameters where probability distributions of uncertain 
parameters are unknown. RO attempts to find the best solution that is (most 
likely) feasible regardless of the realization of uncertain parameters within their 
given uncertainty sets. Soyster (1973), the first study on RO, proposed a 
conservative approach by taking the worst possible values of uncertain 
parameters. Ben-Tal and Nemirovski (1998, 1999, 2000) considered RO models 
for the general convex optimization problems under ellipsoidal uncertainty set. 
Bertsimas and Sim (2004) developed the budget of uncertainty RO approach for 
the linear optimization problems under interval uncertainty set. In this approach 
a limited number of the uncertain parameters, defined by the budget parameter, 
are allowed to deviate from their mean values simultaneously, and it is possible 
to ensure a high probability of feasibility for a constraint by selecting an 
appropriate budget. Bertsimas and Sim (2003) extended the budget of 
uncertainty RO approach to discrete optimization and network flow problems 
with uncertain objective function coefficients. Taking into account that the real 
values of uncertain parameters are revealed sequentially over time and some 
decisions can be postponed until observing these real values, Ben-Tal et al. 
(2004) proposed the adjustable robust counterpart (ARC) for multistage linear 
programs with uncertain parameters. In the ARC some variables, called 
adjustable variables, can be determined after observing the real value of some 
uncertain parameters whereas the rest of the variables, called nonadjustable 
variables, must be determined at the beginning. Because the ARC is mostly 
intractable, Ben-Tal et al. (2004), proposed a tractable approximation of the 
ARC, called the affinely adjustable robust counterpart (AARC). In AARC, 
adjustable variables are redefined as affine functions of realized parameters. 
Bertsimas et al. (2010), showed that the AARC yields the optimal solution 
under certain circumstances. 

 
Robust inventory management and production planning problems under 

demand uncertainty, have been addressed by many researchers using the RO 
approaches (e.g., Ben-Tal et al., 2004; 2005; Bertsimas, Thiele 2006; Bienstock, 
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Özbay, 2008; Ben-Tal et al., 2009; See, Sim 2010). While there are numerous 
studies considering integrated manufacturing and remanufacturing planning 
under known demand and returns or under uncertain demand and returns with 
known probability distributions, to the best of our knowledge, the paper by Wei 
et al. (2011) is the only study considering this production planning problem 
under uncertain demand and returns with known supports (i.e., only means and 
maximum deviations from means are known). Wei et al. (2011) addressed this 
problem using the budget of uncertainty RO methodology. The main deficiency 
of the work by Wei et al. (2011) is that their model yields a static solution in 
that they make all the decisions at the beginning. However, the problem is a 
multi-period planning problem and uncertainty regarding demand and returns 
are realized sequentially (i.e., demand and returns in the first period are known 
after a period, demand and returns in the first two periods are known after the 
second period, and so on) as the time passes, and this information could be 
utilized for better planning. 

 
In this paper, we consider the same production planning problem as Wei 

et al. (2011). The problem is to determine the quantity of serviceable products 
that are manufactured, the quantity of returned products that are remanufactured 
into serviceable products, and the quantity of returned products that are 
disposed over a multi-period planning horizon such that total cost composed of 
production, inventory and disposal costs is minimized. We present the robust 
LP model of Wei et al. (2011), show that their model has some flaws and 
correct their model. We propose a new robust LP model that makes use of the 
multi-stage nature of the problem. Specifically, we propose an affinely 
adjustable robust model that yields a production-disposal policy by defining 
manufacturing, remanufacturing and disposal variables in terms of realized 
demand and return values. We compare the corrected model of Wei et al., 
(2011) and our model on a computational study which reveals that our model 
yields significantly superior practical results than that of Wei et al. (2011). 

 
The rest of the paper is organized as follows. We give the problem 

description and formulation in Section 1. Section 2 presents the existing robust 
model, its derivation and the flaw it has. We propose a new robust model in 
Section 3. Section 4 presents computational results on test instances obtained by 
the existing and newly proposed models. Section 5 concludes the paper. Finally, 
we present the detailed derivation of the new robust model in Appendix. 

 
 
1. PROBLEM DESCRIPTION AND FORMULATION 
 
In the production planning problem considered in this paper, a producer 

faces dynamic stochastic demand for a serviceable product and dynamic 
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stochastic returns of the used product in each period over a finite time horizon. 
The probability distributions of demand and returns are not known. Only the 
mean values and the maximum deviations from the mean values are known or 
can be estimated for demand and returns in each period. The producer can 
manufacture serviceable products and/or remanufacture serviceable products 
from the returned products in order to satisfy the demand it faces. There is no 
quality difference between the manufactured serviceable products and the 
remanufactured ones. When the producer (re)manufactures, a variable 
(re)manufacturing cost per unit (re)manufactured is incurred. The producer must 
decide on the quantity to manufacture and remanufacture at the beginning of 
each period t. Once the demand in period t has been observed, the inventory 
level of the serviceable product at the end of period t, which is equal to 
inventory level of the serviceable product at the end of period t–1 plus 
manufacturing and remanufacturing quantities in period t less realized demand 
in period t, is obtained. If the ending inventory level is positive (resp. negative), 
an inventory holding (resp. backlogging) cost per unit is incurred. The producer 
can remanufacture or dispose the returned products and must decide on the 
quantity to remanufacture and dispose at the beginning of each period t. A 
variable disposal cost per unit disposed is incurred when the producer disposes 
the returned products. Once the returns in period t has been observed, the 
inventory level of the returned products at the end of period t, which is equal to 
inventory level of the returned products at the end of period t–1 plus realized 
return in period t less remanufacturing and disposal quantities in period t, is 
obtained. If the ending inventory level of returned products is positive, an 
inventory holding cost per unit is incurred. Note that the ending inventory level 
of returned products cannot be negative. Without loss of generality, we assume 
that manufacturing, remanufacturing and disposal of products occur 
instantaneously. In the following, important parameters and decision variables 
that are used in the model are given. 

 
Parameters: 

 
ℎ�:  Unit inventory holding cost of returned products. 
ℎ�:  Unit inventory holding cost of serviceable products. 
�:  Unit backlogging cost of serviceable products. 
��:  Unit cost of remanufacturing a returned product. 
��:  Unit cost of manufacturing a serviceable product. 
��:  Unit cost of disposing a returned product. 
	
�:  Inventory level of returned products at the beginning of the planning 

 horizon. 
	
�:  Inventory level of serviceable products at the beginning of the planning 

 horizon. 
��:  Uncertain demand for the serviceable products in period t. 
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�̅�:  Estimate of the mean demand in period t. 
���:  Maximum deviation from the mean demand in period t. 
��:  Uncertain quantity of returned products in period t. 
�̅�:  Estimate of the mean quantity of returned products in period t. 
�̂�:  Maximum deviation from the mean quantity of returned products in period  
 t. 
 
Decision Variables: 
 

��
�:  Quantity of serviceable products that are manufactured in period t. 

��
�:  Quantity of returned products that are remanufactured in period t. 

��
�:  Quantity of returned products that are disposed in period t. 

	��:  Inventory holding or backlogging cost of serviceable products at the end of 
 period t. 

 
The problem can be formulated as follows: 
 
���	∑ [ℎ��	
� + ∑ ��� − ��

� − ��
��

��� )) + 	�� +	����
� + ����

� + ����
��

��� ]    (1) 
s.t. 
 
	�� ≥ ℎ�[	
� + ∑ ���

� + ��
� − ��)�

��� ]										1 ≤ $ ≤ %, � ∈ (� 	,     (2) 
 
	�� ≥ −�[	
� + ∑ ���

� + ��
� − ��)�

��� ]									1 ≤ $ ≤ %, � ∈ (� ,        (3) 
 
	
� + ∑ ��� − ��

� − ��
��

��� ) ≥ 0																				1 ≤ $ ≤ %,	� ∈ *� ,          (4) 
 
��

� ≥ 0, ��
� ≥ 0, ��

� ≥ 0																														1 ≤ $ ≤ %,  (5) 
 

where  
 

(� = {�̅� + ���-�: |-�| ≤ 1	∀	1 ≤ � ≤ $} and *� = {�̅� + �̂�-� : |-�| ≤ 1	∀	1 ≤ � ≤ $}. 
 
 
The objective function (1) is the total of inventory, production and 

disposal costs. Constraints (2) and (3) keep track of the inventory cost 
associated with inventory carried at the end of period t or inventory backordered 
at the end of period t for any possible realization of demand. Note that 	


� +
∑ 1��

� + ��
� − ��2

�
���  is the inventory level of serviceable products at the end of 

period t. Constraints (4) ensure that the inventory level of the returned products 
is nonnegative at the end of period t. Constraints (5) are for nonnegativity of 
variables. Note that the model (1)–(5) is intractable because constraints (2)–(4) 
must hold for infinitely many possible values of uncertain demand and returns. 
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2. THE BUDGET OF UNCERTAINTY ROBUST MODEL 
 
Using the budget of uncertainty RO methodology of Bertsimas and Sim 

(2003), Wei et al. (2011) reformulated the uncertain model (1)–(5) into a 
tractable robust LP model. The robust LP model of Wei et al. (2011) makes all 
production-disposal decisions at time 0 and it ensures the feasibility of these 
decisions with a high probability for all possible realizations of uncertain 
demand and returns. To overcome overconservatiness while protecting against 
infeasibility, Wei et al. (2011) defined Γ�

4 and Γ�
5, respectively, as the maximum 

number of uncertain demand and uncertain return values that can 
simultaneously deviate from their mean values (i.e., �̅� and �̅�) until the end of 
period t. We present the LP model derived by Wei et al., (2011), referred to as 
BURM, in the following: 

 
(BURM) ���	∑ [ℎ�6�� + 	�� +	����

� + �̃���
� + �̃���

�]�
��� + ℎ�8�Γ�

5 + %ℎ�	
�                      
+∑ ℎ��% − $ + 1)�̅��

���                      (6) 
 

s.t. (5), 
 
	�� ≥ ℎ�9	
� + ∑ 1��

� + ��
� − �̅�2 +�

��� :�Γ�
4 + ∑ ;��

�
��� <					1 ≤ $ ≤ %, (7) 

 
	�� ≥ �9−	
� − ∑ 1��

� + ��
� − �̅�2 + :�Γ�

4 + ∑ ;��
�
���

�
��� < 		1 ≤ $ ≤ %,    (8) 

 
	
� + ∑ ��̅� − ��

� − ��
��

��� ) ≥ =�Γ�
5 + ∑ >��

�
��� + ��?�

� 									1 ≤ $ ≤ %, (9) 
 
:� + ;�� ≥ ��� 																																	1	 ≤ � ≤ $ ≤ %,   (10) 
 
=� + >�� ≥ �̂� 																																	1 ≤ � ≤ $ ≤ %,      (11) 
 
8� + 6�� ≤ �% − $ + 1)�̂� 									1 ≤ $ ≤ %,                        (12) 
 
:� ≥ 0, ;�� ≥ 0,=� ≥ 0, >�� ≥ 0, 8� ≥ 0, 6�� ≥ 0																1 ≤ � ≤ $ ≤ %,      (13) 
 

where �̃� = �� − �% − $ + 1)ℎ�,  and �̃� = �� − �% − $ + 1)ℎ� . 
 
Note that the additional variables :�, ;�� , =� , >�� , 8� , and	6�� for 1 ≤ � ≤

$ ≤ %, and the additional constraints (10)–(12) are used when transforming the 
uncertain model (1) – (5) into a tractable model. Next we show that there are 
flaws in constraints (9) and (12) of the model given above. As shown by 
Bertsimas and Sim (2004), it is possible to set Γ�

5 to a value in advance such that 
the probability of violating the feasibility of (4) is very low. Constraints (9) and 
(11) are derived from constraints (4) by ensuring the feasibility of (4) for all 
possible realizations of uncertain returns �� (1 ≤ � ≤ $) within their interval 
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[�̅� − �̂�, �̅� + �̂�] provided that at most Γ�
5 uncertain return values can deviate 

from their mean values until the end of period t. Thus, we need to solve  
 
���	{	
� + ∑ ��̅� + �̂�-� − ��

� − ��
��

��� ): |-�| ≤ 1, ∑ |-�| ≤�
��� Γ�

5 , 1 ≤ � ≤ $}					1 ≤
$ ≤ %,    (14) 

 
which is equivalent to solving the following auxiliary LP model for each period 
t (1 ≤ $ ≤ %): 

 
−�DE	∑ �̂�-�

�
���  (15) 

 
s.t. ∑ -� ≤ Γ�

5�
��� , (16) 

 
0 ≤ -� ≤ 1		1 ≤ � ≤ $.  (17) 
 
Defining =� and >�� as the dual variables associated with constraints (16) 

and (17), respectively, and using duality theory, we obtain the following dual 
model: 

 
−���	=�Γ�

5 + ∑ >��
�
���    

 
s.t. =� + >�� ≥ �̂�  1 ≤ � ≤ $,   
 
=� ≥ 0, >�� ≥ 0     1 ≤ � ≤ $.    
 
As a result, the first set of constraints of the above dual model is (11) and 

we obtain 	
� + ∑ ��̅� − ��
� − ��

��
��� ) − �=�Γ�

5 + ∑ >��
�
��� ) ≥ 0 in place of (14). 

Noting that ��?�
�  term in the right-hand side of (9) should not exist, we can state 

the following constraints as the correct form of (9): 
 
	
� + ∑ ��̅� − ��

� − ��
��

��� ) ≥ =�Γ�
5 + ∑ >��

�
���  1 ≤ $ ≤ %.             (9’) 

 
Using a similar auxiliary LP model and duality theory, one can easily 

obtain the correct form of constraints (12) as:  
 
8� + 6�� ≥ �% − $ + 1)�̂� 1 ≤ $ ≤ %.            (12’) 
 
Note that the only difference between (12) and (12’) is the direction of 

the inequality. It must be a ‘≥’ sign according to the duality theory, as in (12’), 
because the dual variables of (12’) are restricted to be nonnegative in the 
auxiliary LP model with a maximization objective (see model (18) in Wei et al. 
2011). 
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It is important to indicate these flaws because we observed the same 
flaws in another study in the literature. See Chunfa et al. (2011) who proposed a 
budget of uncertainty robust model to a similar problem with the same flaws in 
their model. 

 
 
3. THE NEW ROBUST MODEL 
 
We propose a new robust LP model based on defining manufacturing, 

remanufacturing, disposal and inventory variables as affine functions of realized 
demand and return values. All variables are adjustable variables, which are 
decided in each period based on the earlier periods’ realized demand and 
returns. Note that at the beginning (resp. end) of a period t, we know demand 
and returns in periods 1, 2 …, t–1 (resp. 1, 2, …, t). Specifically, we propose 
��

� , ��
� , ��

� and 		�� to be replaced with the following terms to make the model 
adjustable to the uncertain demand and returns: 

 
��

� = ��

� + ∑ ��F��F

�� + �F��F
G�)�H�

F��  1 ≤ $ ≤ % (18) 
 
��

� = ��

� + ∑ ��F��F

�� + �F��F
G�)�H�

F��  1 ≤ $ ≤ % (19) 
 
��

� = ��

� + ∑ ��F��F

�� + �F��F
G�)�H�

F��  1 ≤ $ ≤ % (20) 
 
	�� = 	�
� + ∑ ��F	�F

�� + �F	�F
G�)�

F��  1 ≤ $ ≤ %, (21) 
 
 

where ��

�, ��F

��, ��F
G�,	��


� , ��F
��, ��F

G�,	��

� , ��F

��, ��F
G�, 	�


� , 	�F
��, and 	�F

G� are the 
decision variables. 

 
Replacing ��

� , ��
� , ��

� and 		�� variables with the right-hand sides of (18)–
(21), respectively, in the model (1)–(5), we obtain an uncertain model which 
should be reformulated as a tractable model. As shown by Ben-Tal et al. (2004), 
the following inequality 

 
I
 + ∑ I�D� ≤ 0�

���  (22) 
 

where D� ∈ [DJ� − DK�, DJ� + DK�] for 1 ≤ $ ≤ % is an uncertain parameter and I� 
for 1 ≤ $ ≤ % is an expression involving some decision variables, can 
equivalently be reformulated as 
 

I
 + ∑ �I�DJ� + L�DK�) ≤ 0�
��� , (23)
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−L� ≤ I� ≤ L� 1 ≤ $ ≤ %. (24) 
 
 
Using the above methodology, we transformed the uncertain model (1)–

(5) into a tractable new robust LP model, which we refer to as the affinely 
adjustable robust model (AARM) and present in the following (see Appendix 
for details on the derivation of this model): 

 
(AARM)��� ∑ �	�
��

��� + ∑ ��
F�� �̅F	�F

�� + �̅F	�F
G�) + �� ∑ ���


��
��� +

∑ ��H�
F�� �̅F��F

�� + �̅F��F
G�) + ∑ �̃�

����

��

��� + ∑ ��H�
F�� �̅F��F

�� + �̅F��F
G�) +

∑ �̃�
����


��
��� + ∑ ��H�

F�� �̅F��F
�� + �̅F��F

G�) + ∑ �����
��� M�

� + �̂�M�
G) + %ℎ�	
� +

∑ ℎ��% − $ + 1)�̅��
���     (25) 

s.t. 

 

−MF
� ≤ 	FF

�� + ∑ �	�F
�� + ����F

�� + �̃�
���F

�� + �̃�
���F

��)�
��F?� ≤ MF

� 1 ≤ N ≤ %,	(26) 
 
−MF

G ≤ 	FF
G� + ℎ��% − N + 1) + ∑ �	�F

G� + ����F
G� + �̃�

5��F
G� + �̃�

4��F
G�)�

��F?� ≤ MF
G   

 1 ≤ N ≤ %,      (27) 
 
	�
� + ∑ ��̅F	�F

�� + �̅F	�F
G�)�

F�� − ℎ� ∑ ∑ 1�̅F��F
�� + �̅F��F

G� + �̅F��F
�� + �̅F��F

G�2�H�
F��

�
���   

 	
     −ℎ� ∑ ���


� + ��

� )�

��� − ∑ ���F��F
� + �̂F��F

G )�
F�� ≥ ℎ��	
� − ∑ �̅�

�
��� )  1 ≤ $ ≤ %,		  (28) 

 
−��F

� ≤ ℎ� ∑ ���F
�� + ��F

��) − ℎ� −�
��F?� 	�F

�� ≤ ��F
�     1 ≤ $ ≤ %, 1 ≤ N ≤ $,   (29) 

 
−��F

G ≤ ℎ� ∑ ���F
G� + ��F

G�) −�
��F?� 	�F

G� ≤ ��F
G   1 ≤ $ ≤ %, 1 ≤ N ≤ $,  (30) 

 
	�
� + ∑ ��̅F	�F

�� + �̅F	�F
G�)�

F�� + � ∑ ∑ 1�̅F��F
�� + �̅F��F

G� + �̅F��F
�� + �̅F��F

G�2�H�
F��

�
���

 	
     +� ∑ ���


� + ��

� )�

��� − ∑ ���FO�F
� + �̂FO�F

G )�
F�� ≥ −��	
� − ∑ �̅�

�
��� )  1 ≤ $ ≤ %,	    (31) 

 
−O�F

� ≤ −� ∑ ���F
�� + ��F

��) + � −�
��F?� 	�F

�� ≤ O�F
�       1 ≤ $ ≤ %, 1 ≤ N ≤ $,   (32) 

 
−O�F

G ≤ −� ∑ ���F
G� + ��F

G�) −�
��F?� 	�F

G� ≤ O�F
G   1 ≤ $ ≤ %, 1 ≤ N ≤ $,

                                       (33) 
−∑ ���


� + ��

��

��� ) − ∑ ∑ ��̅F��F
�� + �̅F��F

G� + �̅F��F
�� + �̅F��F

G�)�H�
F��

�
���   

    −∑ ���FP�F
� + �̂FP�F

G )�H�
F�� ≥ −	
� − ∑ �̅��

��� + �̂�  1 ≤ $ ≤ %,                     (34) 
 
−P�F

� ≤ ∑ ���F
�� + ��F

��)�
��F?� ≤ P�F

�  1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,	        (35) 
 
−P�F

G ≤ 1 − ∑ ���F
G� + ��F

G�)�
��F?� ≤ P�F

G  1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,     (36) 
 
��


� + ∑ 1�̅F��F
�� + �̅F��F

G�−��FQ�F
�� − �̂FQ�F

G�2�H�
F�� ≥ 0            1 ≤ $ ≤ %,      (37) 
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−Q�F
�� ≤ ��F

�� ≤ Q�F
�� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,    (38) 

 
−Q�F

G� ≤ ��F
G� ≤ Q�F

G� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,    (39) 
 
��


� + ∑ 1�̅F��F
�� + �̅F��F

G�−��FQ�F
�� − �̂FQ�F

G�2�H�
F�� ≥ 0 1 ≤ $ ≤ %,     (40) 

 
−Q�F

�� ≤ ��F
�� ≤ Q�F

�� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,    (41) 
 
−Q�F

G� ≤ ��F
G� ≤ Q�F

G� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,    (42) 
 
��


� + ∑ 1�̅F��F
�� + �̅F��F

G�−��FQ�F
�� − �̂FQ�F

G�2�H�
F�� ≥ 0 1 ≤ $ ≤ %,     (43) 

 
−Q�F

�� ≤ ��F
�� ≤ Q�F

�� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,    (44) 
 
−Q�F

G� ≤ ��F
G� ≤ Q�F

G� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,    (45) 
 

where �̃�
� = �� − �% − $ + 1)ℎ�, and �̃�

� = �� − �% − $ + 1)ℎ�. 
 
Note that, unlike the model of Wei et al. (2011), the proposed robust 

model will yield a production-disposal policy that adapts the production-
disposal quantities based on the realization of demand and returns. The 
production-disposal policy, which will be feasible regardless of the realization 
of demand and returns, is determined by the realized demand and returns, and 
by the values of the ��


�, ��F
��, ��F

G�,	��

� , ��F

��, ��F
G�, ��


� , ��F
��, ��F

G� variables for 
1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1, that are found by solving AARM. For example, the 
quantity of serviceable products that are manufactured in period 2 (i.e., �G

�) is 
determined by �G


� + ���G�
�� + ���G�

G�, where �� and �� are the realized demand 
and quantity returned in period 1 respectively, and �G


� , �G�
��, and �G�

G� are 
found by solving AARM at time 0. 

 
 
4. COMPUTATIONAL RESULTS 
 
We have performed computational experiments on test instances in order 

to assess the average-case performance of solutions yielded by the BURM and 
AARM. The average-case performance of models is assessed by considering the 
average performance of the solution yielded by each model for an instance over 
a given number of simulations of realized demand and returns. All these models 
were solved by CPLEX 12.5 with its default settings, and all computational 
experiments have been performed on a Dell T7500 Precision Workstation 
running under Windows 7. 
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For the computational experiments, we have generated test instances 
using settings similar to those used by Wei et al. (2011) as follows. The length 
of the planning horizon is set to 20. The initial inventory levels of serviceable 
products and returned products are set to zero (i.e., 	


� = 	
� = 0). The unit 
manufacturing, remanufacturing and disposing costs are taken as �� = 7, 
�� = 4, �� = 2, respectively. As assumed by Wei et al., (2011): ℎ� = 4 ≤
ℎ� = 5. The unit backlogging cost is set to � ∈ {3,4,5,6} in order to ensure all 
possible relations (i.e., less than, equal, or greater than) between ℎ� and �, and 
ℎ� and �. The uncertain demand has a mean �̅� ∈ {18,20,22} and a standard 
deviation Y ∈ {2,4}. In our RO framework, the uncertain demand �� can take 
any value from the interval [�̅� − 2Y, �̅� + 2Y], i.e., ��� = 2Y. Similarly, the 
uncertain returns have a mean �̅� ∈ {14,16,18} and a standard deviation 
Y ∈ {2,4}. As a result, the uncertain return �� can take any value from the 
interval [�̅� − 2Y, �̅� + 2Y], i.e., �̂� = 2Y. Thus, combining all parameter settings 
we have generated 72 instances for the average-case performance assessment, in 
total. While the budgets of uncertainty Γ�

4 are generated such that the 
probability of infeasibility at constraints (2) and (3) for t is less than 5%, the 
budgets of uncertainty Γ�

5 are generated such that the probability of infeasibility 
at constraint (4) for t is less than 0.1%. The probability of infeasibility at 
constraint (4) for t is set to such a low number because infeasibility at 
constraints (4) indicates that an infeasible solution is obtained by solving 
BURM. On the other hand, the probability of infeasibility at constraints (2) and 
(3) for t is set to 5% because the probability of infeasibility at constraints (2) 
and (3) for t does not affect the feasibility of the solution obtained by solving 
BURM while that probability affects the cost of solution obtained. To estimate 
the average performance of solutions provided by the different models, we 
generate 100 simulations of realized demand and realized returns (see e.g. Ben-
Tal et al., 2004) for each instance. In particular, realized demand and returns are 
generated as uniformly distributed from the interval [�̅� − 2Y, �̅� + 2Y] and 
[�̅� − 2Y, �̅� + 2Y], respectively. 

 
We have compared the practical performances of BURM and AARM 

against realized demand and returns and reported the results in Table 1 where 
columns 1–5 show the unit backlogging cost of serviceable products, the 
standard deviation value of demand and returns, the mean demand and returns 
values, and the relative improvement brought by the AARM over BURM 
(Imp%), respectively. Columns 6 and 7 indicate the average objective function 
value and the standard deviation of the average objective function values, given 
by the optimal solution of the BURM against 100 simulations of realized 
demand and returns. Columns 8 and 9 are for the AARM and have the same 
meanings as 6 and 7. The key results of Table 1 are as follows: 
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• The AARM performs significantly better than the BURM on all test instances 
with an average improvement of 54.8%. 

• As depicted by the columns 7 and 9, AARM yields much more stable results 
over different realizations of demand and returns than BURM does. 

 
• As the uncertainty of demand and returns increases (i.e., when Y increases), the 

improvement brought by AARM over BURM increases as well. 
 
• As the mean demand increases, the improvement brought by AARM over 

BURM decreases in general. 
 
• The improvement brought by AARM over BURM decreases (resp. increases) 

when the mean return value increases from 14 to 16 (resp. from 16 to 18). 
 
We have also provided a graphical display of Imp% values for different � 

values in Figure 1 in order to see how Imp% values are affected by different 
parameters. First of all, it seems that the percentage improvement brought by 
AARM over BURM does not seem to be affected by the unit inventory 
backlogging cost. It is easy to observe that when the variability of uncertain 
demand and returns is larger (right-half of the figure), the percentage 
improvement brought by AARM over BURM is larger too. 

 
 

Figure 1. The Percentage Improvement brought by AARM over BURM for 
Different Z. 
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Table 1. The Average-Case Performances of BURM and AARM. 

     

BURM AARM 

B 

 
[ \]^ _J^ Imp% Average 

Standard 

Dev. 
Average 

Standard 

Dev. 

3 2 18 14 51.5 5121.1 648.4 2482.2 24.4 

3 2 18 16 52.4 5012.7 592.8 2387.2 26.3 

3 2 18 18 52.9 4971.8 510.0 2342.8 23.2 

3 2 20 14 49.4 5439.6 523.3 2754.3 19.3 

3 2 20 16 50.3 5378.3 584.0 2671.0 19.1 

3 2 20 18 51.2 5248.1 591.3 2562.3 23.5 

3 2 22 14 48.2 5698.3 630.3 2953.4 31.4 

3 2 22 16 48.1 5633.5 532.5 2926.3 25.0 

3 2 22 18 49.2 5537.0 600.6 2811.3 24.6 

3 4 18 14 58.1 8569.0 1145.4 3592.7 75.1 

3 4 18 16 59.4 8670.0 960.5 3523.8 70.4 

3 4 18 18 59.5 8222.7 1035.2 3329.3 77.0 

3 4 20 14 58.7 9093.1 964.4 3756.3 73.8 

3 4 20 16 58.4 8773.2 1056.2 3649.0 60.4 

3 4 20 18 59.0 8653.0 1082.9 3548.8 63.7 

3 4 22 14 56.8 9173.6 1103.5 3963.5 60.6 

3 4 22 16 57.3 9008.5 1143.0 3848.7 53.3 

3 4 22 18 58.3 8933.6 1094.0 3726.5 61.2 

4 2 18 14 51.8 5277.9 603.7 2543.2 17.0 

4 2 18 16 51.5 5066.4 532.0 2457.8 21.9 

4 2 18 18 52.6 4998.4 625.1 2368.0 25.8 

4 2 20 14 48.8 5498.3 576.7 2814.8 16.6 

4 2 20 16 49.5 5343.2 520.8 2697.8 18.0 

4 2 20 18 50.4 5262.0 537.7 2609.4 19.7 

4 2 22 14 48.6 5764.7 566.4 2960.4 25.2 

4 2 22 16 47.8 5686.9 600.1 2969.5 16.0 

4 2 22 18 48.6 5551.5 575.6 2851.1 18.5 

4 4 18 14 59.4 8868.4 1074.1 3601.7 75.8 

4 4 18 16 59.2 8750.2 1117.4 3566.9 65.9 

4 4 18 18 59.4 8583.1 1183.6 3481.6 69.3 

4 4 20 14 58.6 9270.4 1144.3 3834.2 54.4 

4 4 20 16 57.7 8917.1 1093.1 3768.0 57.5 

4 4 20 18 59.7 9041.8 1241.0 3648.3 52.1 

4 4 22 14 56.3 9252.7 1109.8 4042.3 50.6 

4 4 22 16 57.9 9335.4 1210.8 3927.2 49.5 

4 4 22 18 59.3 9420.8 1044.5 3830.7 44.9 
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Table 1. Continued 

 

BURM AARM 

b [ \]^ _J^ Imp% Average 
Standard 

Dev. 
Average 

Standard 

Dev. 

5 2 18 14 53.0 5464.5 632.3 2569.3 16.3 

5 2 18 16 52.7 5209.6 588.0 2465.2 22.7 

5 2 18 18 54.6 5295.5 609.7 2402.7 28.5 

5 2 20 14 49.4 5539.5 532.0 2802.2 18.9 

5 2 20 16 50.4 5475.5 569.1 2714.9 16.3 

5 2 20 18 51.4 5392.0 606.7 2620.3 23.6 

5 2 22 14 50.0 5901.3 547.9 2950.2 26.3 

5 2 22 16 48.8 5798.9 588.4 2971.8 21.3 

5 2 22 18 50.1 5779.6 549.0 2884.7 23.1 

5 4 18 14 59.1 8912.3 1163.6 3645.7 67.1 

5 4 18 16 59.6 8857.2 1088.0 3577.9 76.3 

5 4 18 18 60.8 8844.0 1042.7 3469.4 74.6 

5 4 20 14 59.0 9404.5 1212.4 3857.5 61.8 

5 4 20 16 58.5 9083.6 1096.2 3773.5 69.2 

5 4 20 18 59.6 9028.9 1205.5 3644.7 65.6 

5 4 22 14 57.4 9505.5 1038.0 4044.8 44.8 

5 4 22 16 57.6 9296.4 1176.8 3942.7 50.1 

5 4 22 18 58.0 9132.1 1229.0 3835.2 53.4 

6 2 18 14 52.2 5389.6 662.6 2573.8 16.6 

6 2 18 16 54.2 5399.4 624.2 2471.0 19.8 

6 2 18 18 53.3 5167.9 631.3 2412.9 25.3 

6 2 20 14 49.8 5586.9 575.8 2807.3 21.5 

6 2 20 16 51.7 5626.9 600.1 2716.4 19.9 

6 2 20 18 51.6 5471.8 638.1 2650.5 23.4 

6 2 22 14 50.6 6062.4 590.5 2996.5 28.2 

6 2 22 16 49.7 5900.0 564.4 2968.6 20.9 

6 2 22 18 50.3 5798.6 618.7 2879.2 19.3 

6 4 18 14 59.8 9213.1 1171.4 3705.3 68.3 

6 4 18 16 60.9 9202.5 1107.5 3602.0 77.5 

6 4 18 18 60.9 8900.1 1263.0 3477.1 81.0 

6 4 20 14 59.2 9478.6 1236.9 3868.0 63.1 

6 4 20 16 59.7 9293.8 1181.2 3749.0 63.6 

6 4 20 18 59.8 9205.0 1114.9 3696.7 59.7 

6 4 22 14 57.2 9507.2 1207.6 4068.3 47.5 

6 4 22 16 59.6 9770.2 1127.3 3949.7 51.8 

6 4 22 18 58.5 9304.7 1088.6 3863.4 53.2 
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In order to understand why AARM performs much better than BURM, 
we have analyzed the average cost compositions yielded by both models. We 
present the average cost compositions over all instances in Table 2, where IHC-
S (resp. IBC-S) denotes the inventory holding (resp. backlogging) cost 
percentage for serviceable products, IHC-R the inventory holding cost 
percentage for the returned products, MC the variable manufacturing cost 
percentage, RC the variable remanufacturing cost percentage, and DC the 
variable disposal cost percentage.  

 
Table 2. Average Cost Compositions Yielded by AARM and BURM 

 

Model 
IHC-S IBC-S IHC-R MC RC DC 

AARM 14.3 1.1 14.7 34.2 30.9 4.7 

BURM 4.5 6.8 59.3 15.3 14.1 0.0 

 
 
It is easy to observe from Table 2 that unlike AARM, the main cost item 

of BURM is by far the inventory holding cost for returned products, which is 
due to the requirement to ensure feasibility for the returned products inventory. 
On the other hand, the major cost items of AARM are variable manufacturing 
and remanufacturing costs. 

 
Figure 2. Average Quantities that are Obtained by AARM and BURM on 

Instances with Z = 3. 
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Next, we analyze the solutions generated by AARM and BURM. Figure 
2 shows the average manufacturing, remanufacturing and disposal quantities 
that are obtained by AARM and BURM on instances with b = 3 (i.e., first 18 
instances in Table 1). Because the results on instances with b = 4, 5, and 6 are 
quite similar to the results on instances with b = 3, we present only the results 
on instances with b = 3. In Figure 2, Man-AARM, Rem-AARM, and Dis-
AARM denote the average manufacturing, remanufacturing and disposal 
quantities yielded by AARM, respectively, while Man-BURM and Rem-BURM 
denote the average manufacturing and remanufacturing quantities generated by 
BURM, respectively. Note that as the average disposal quantities generated by 
BURM were always zero, they are not presented in Figure 2. Key insights that 
are obtained regarding the average quantities yielded by AARM and BURM are 
as follows: 

 
• In all instances, the total of average remanufacturing and disposal quantities 

generated by AARM was greater than that generated by BURM. This indicates 
that BURM is more conservative than AARM in ensuring feasibility of the 
returned products inventory which results in higher inventory holding costs of 
returned products for BURM (also shown by Table 2).  
 

• For AARM, as the mean quantity of returned products increases, the average 
remanufacturing and disposal quantities increased whereas the average 
manufacturing quantities decreased. The same observation is valid for 
quantities obtained by BURM except that the disposal quantities yielded by 
BURM were always zero. 

 
• As the mean demand increases, the average manufacturing and 

remanufacturing quantities increased for both AARM and BURM. Contrary to 
the zero disposal quantities yielded by BURM, the average disposal quantities 
yielded by AARM decreased as the mean demand increases. 

 
• For AARM, as the uncertainty of demand and returns increases, the average 

manufacturing and disposal quantities increased whereas the average 
remanufacturing quantities decreased. We have the same comment for BURM 
except for the zero disposal quantities. 

 
 
CONCLUSION 
 
By developing a new robust LP model and a policy, this study contributes 

to the state of knowledge on how producers should simultaneously plan for their 
remanufacturing and regular manufacturing under demand and return 
uncertainty. It has been shown that the robust LP model existing in the literature 
has flaws, and then the flaws in the model have been corrected. It has 
empirically been shown that the new robust LP model yields superior policies 
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and results for the production planning problem with remanufacturing under 
demand and returns uncertainty than the model existing in the literature does. 
Thus, the researchers and decision makers considering such problems are 
presented a powerful decision making tool. 
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APPENDIX DERIVATION OF AARM 
 
Here we describe in detail how the affinely adjustable robust model is derived. 
 
(a) The objective function (25), constraints (26) and (27): First note that 
 
∑ ∑ −ℎ���

��
���

�
��� = ∑ ∑ −ℎ���

��
��� = −�

��� ∑ ��
� ∑ ℎ��

���
�
���    

= −∑ �% − � + 1)ℎ���
��

��� .  (46) 
 
Similarly, 
 
∑ ∑ −ℎ���

��
���

�
��� = −∑ �% − � + 1)ℎ���

��
���    (47) 

 
Using (46) and (47), the objective function (1) can be rewritten as 
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%ℎ�	
� + ℎ� ∑ ∑ ���
���

�
��� − ∑ �% − � + 1)ℎ���

��
��� − ∑ �% − � + 1)ℎ���

��
���   

+∑ [	�
� +	����

� + ����
� + ����

�]�
���   

= %ℎ�	
� + ℎ� ∑ ∑ ���
���

�
��� + ∑ [	�

� +	����
� + �̃�

���
� + �̃�

���
�]�

��� , (48) 
 
where �̃�

� = �� − �% − $ + 1)ℎ� and �̃�
� = �� − �% − $ + 1)ℎ�.  

 
Substituting the right-hand sides of (18)–(21) in place of 	�

� , ��
�, ��

�	and	��
� variables in (48), 

respectively, gives 
 
∑ �	�


��
��� + ∑ ��

F�� �F	�F
�� + �F	�F

G�)) + �� ∑ ���

��

��� + ∑ ��H�
F�� �F��F

�� + �F��F
G�))

 
+∑ �̃�

����

��

��� + ∑ ��H�
F�� �F��F

�� + �F��F
G�)) + ∑ �̃�

����

��

��� + ∑ ��H�
F�� �F��F

�� + �F��F
G�))  

+%ℎ�	
� + ℎ� ∑ ∑ �F�
F��

�
��� . (49) 

 
Using the equivalences (i.e., changing the summation bounds) ∑ ∑ ` =�

F��
�
��� ∑ ∑ `�

��F
�
F��  and 

∑ ∑ ` =�H�
F��

�
��� ∑ ∑ `�

��F?�
�H�
F��  for any Y, (49) can be rewritten as 
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+��	��
G� + ∑ [�F	FF
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� +�
��� �̃�
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� ) + %ℎ�	
� + ∑ ℎ��% − N + 1)�F�

F�� .    (50) 
 
Aggregating terms involving �F and �F in (50), one obtains 
 
��	��

�� + ∑ �F[	FF
�� + ∑ �	�F

�� + ����F
�� + �̃�

���F
�� + �̃�

���F
���

��F?�
�H�
F�� )] + ���	��

G� + ℎ�)  
+∑ �F[	FF

G� + ∑ �	�F
G� + ����F

G� + �̃�
���F

G� + �̃�
���F

G��
��F?�

�H�
F�� ) + ℎ��% − N + 1)]  

+∑ �	�

� +�

��� ����

� + �̃�

���

� + �̃�

���

� ) + %ℎ�	
�.           (51) 

 
Note that the objective function (51) can be rewritten as ���	{a: a ≥ b} where A denotes (51). 
Using the methodology described in Section 3 to reformulate (22) as (23) and (24), one can 
equivalently reformulate (51) as 
 
a ≥ �̅�	��

�� + ∑ �̅F[	FF
�� + ∑ �	�F

�� + ����F
�� + �̃�

���F
�� + �̃�

���F
���

��F?�
�H�
F�� )] + �̅��	��

G� + ℎ�)  
+∑ �̅F[	FF

G� + ∑ �	�F
G� + ����F

G� + �̃�
���F

G� + �̃�
���F

G��
��F?�

�H�
F�� ) + ℎ��% − N + 1)]  

+∑ �	�

� +�

��� ����

� + �̃�

���

� + �̃�

���

� ) + %ℎ�	
� + ∑ �����

��� M�
� + �̂�M�

G),    (52) 
 
−MF

� ≤ 	FF
�� + ∑ �	�F

�� + ����F
�� + �̃�

���F
�� + �̃�

���F
��)�

��F?� ≤ MF
� 1 ≤ N ≤ %,    (53) 

−MF
G ≤ 	FF

G� + ℎ��% − N + 1) + ∑ �	�F
G� + ����F

G� + �̃�
5��F

G� + �̃�
4��F

G�)�
��F?� ≤ MF

G   
 1 ≤ N ≤ %,     (54) 
 
Note that (52)–(54) are equivalent to (25)–(27), respectively. Thus, ∑ �����

��� M�
� + �̂�M�

G) is the 
additional term due to the uncertainty in demand and returns in addition to the terms involving 
mean demand and returns in the objective function. 
 
(b) Constraints (28)–(30): Substituting the right-hand sides of (18), (19) and (21) in place of 
��

�, ��
� and 	�

� variables in (2), respectively, gives 
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	�

� + ∑ ��F	�F

�� + �F	�F
G�)�

F�� ≥ ℎ�9	

� + ∑ 1��


� + ∑ 1�F��F
�� + �F��F

G�2�H�
F�� + ��


� +�
���

∑ 1�F��F
�� + �F��F

G�2�H�
F�� − ��2< 1 ≤ $ ≤ %, � ∈ (�, � ∈ *�, 

 
which can be rewritten as 
 
	�

� + ∑ ��F	�F

�� + �F	�F
G�)�

F�� ≥ ℎ�	

� + ℎ� ∑ ��


� + ℎ� ∑ ∑ 1�F��F
�� + �F��F

G�2�H�
F��

�
��� +�

���

ℎ� ∑ ��

��

��� + ℎ� ∑ ∑ 1�F��F
�� + �F��F

G�2�H�
F��

�
��� − ℎ� ∑ ��

�
���     1 ≤ $ ≤ %, � ∈ (�, � ∈ *�.   (55) 

 
Using the equivalence (i.e., changing the summation bounds) ∑ ∑ ` =�H�

F��
�
��� ∑ ∑ `�

��F?�
�H�
F��  for 

any Y, (55) can be rewritten as  
 
	�

� + ∑ ��F	�F

�� + �F	�F
G�)�

F�� ≥ ℎ�	

� + ℎ� ∑ ���


� + ��

� ) + ℎ� ∑ ∑ 1�F��F

�� +�
��F?�

�H�
F��

�
���

�F��F
G�) + ℎ� ∑ ∑ 1�F��F

�� + �F��F
G�2�

��F?�
�H�
F�� − ℎ� ∑ �F

�
F��      1 ≤ $ ≤ %, � ∈ (�, � ∈ *�.    (56) 

  
(56) can be recast as 
 
 
	�

� ≥

ℎ�	

� + ℎ� ∑ 1��


� + ��

� 2 − ��	��

�� + ∑ [−�F	�F
�� + ℎ� ∑ �F��F

���
��F?�

�H�
F�� + ℎ� ∑ �F��F

�� −�
��F?�

�
���

ℎ��F] − ℎ� �� − ��	��
G� + ∑ [−�F	�F

G� + ℎ� ∑ �F��F
G��

��F?�
�H�
F�� + ℎ� ∑ �F��F

G�]�
��F?�     

                                                                                                    1 ≤ $ ≤ %, � ∈ (�, � ∈ *�.     (57) 
 
Aggregating terms involving �F and �F in (57), one obtains 
 
	�

� ≥ ℎ�	


� + ℎ� ∑ 1��

� + ��


� 2 + ���−	��
�� − ℎ�) + ∑ �F[−	�F

�� + ℎ� ∑ ���F
�� + ��F

���
��F?�

�H�
F�� ) −�

���

ℎ�] − ��	��
G� + ∑ �F[−	�F

G� + ℎ� ∑ ���F
G� + ��F

G�)�
��F?�

�H�
F�� ] 1 ≤ $ ≤ %, � ∈ (�, � ∈ *�.  (58) 

 
Using the methodology described in Section 3, one can equivalently reformulate (58) as 
 
	�

� ≥ ℎ�	


� + ℎ� ∑ 1��

� + ��


� 2 + �̅��−	��
�� − ℎ�) + ∑ �̅F[−	�F

�� + ℎ� ∑ ���F
�� + ��F

���
��F?�

�H�
F�� ) −�

���

ℎ�] − �̅�	��
G� + ∑ �̅F[−	�F

G� + ℎ� ∑ ���F
G� + ��F

G�)�
��F?�

�H�
F�� ]  

+∑ ���F��F
� + �̂F��F

G )�
F��  1 ≤ $ ≤ %, (59) 

 
−��F

� ≤ −	�F
�� + ℎ� ∑ 1��F

�� + ��F
��2 − ℎ��

��F?� ≤ ��F
�          1 ≤ $ ≤ %, 1 ≤ N ≤ $,     (60) 

 
−��F

G ≤ −	�F
G� + ℎ� ∑ 1��F

G� + ��F
G�2�

��F?� ≤ ��F
G   1 ≤ $ ≤ %, 1 ≤ N ≤ $,               (61) 

 
The term ∑ ���F��F

� + �̂F��F
G )�

F��  in (59) is due to the uncertainty in demand and returns. Excluding 
the term ∑ ���F��F

� + �̂F��F
G )�

F��  in (59), the rest is equivalent to the expression in (55) with 
demand and returns replaced with their estimated means. Thus, (59) is equivalent to (28). The 
constraints (60) and (61) are the same as (29) and (30), respectively. 
 
(c) Constraints (31)–(33): Similar to part (b). 
 
(d) Constraints (34)–(36): Substituting the right-hand sides of (19) and (20) in place of ��

� and ��
� 

variables, respectively, in (4) yields 
 
	
� + ∑ ��� − ��


� − ∑ 1�F��F
�� + �F��F

G�2�H�
F�� − ��


� − ∑ 1�F��F
�� + �F��F

G�2�H�
F��

�
��� ) ≥ 0  

 1 ≤ $ ≤ %, � ∈ (�H�, � ∈ *�, (62) 
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Using the equivalence ∑ ∑ ` =�H�
F��

�
��� ∑ ∑ `�

��F?�
�H�
F��  for any Y, (62) can be rewritten as 

 
	
� − ∑ ���


��
��� + ��


�) + ∑ �� − ∑ ∑ 1�F��F
�� + �F��F

G� + �F��F
�� + �F��F

G�2�
��F?�

�H�
F��

�
��� ≥ 0  

 1 ≤ $ ≤ %, � ∈ (�H�, � ∈ *�.    (63) 
 
Aggregating terms involving �F and �F in (63), one obtains 
 
	
� − ∑ ���


��
��� + ��


�) + �� − ∑ �F[∑ 1��F
�� + ��F

��2]�
��F?�

�H�
F�� − ∑ �F[−1 + ∑ 1��F

G� +�
��F?�

�H�
F��

��F
G�)] ≥ 0            1 ≤ $ ≤ %, � ∈ (�H�, � ∈ *�,    

 
which can be rewritten as 
 
	
� − ∑ ���


��
��� + ��


�) ≥ −�� + ∑ �F[∑ 1��F
�� + ��F

��2]�
��F?�

�H�
F�� + ∑ �F[−1 + ∑ 1��F

G� +�
��F?�

�H�
F��

��F
G�)]           1 ≤ $ ≤ %, � ∈ (�H�, � ∈ *�.   (64) 

 
 
Using the methodology described in Section 3, one can equivalently reformulate (64) as 
 
	
� − ∑ ���


��
��� + ��


�) ≥ −�̅� + ∑ �̅F[∑ 1��F
�� + ��F

��2]�
��F?�

�H�
F�� + ∑ �̅F9−1 + ∑ 1��F

G� +�
��F?�

�H�
F��

��F
G�)< + ∑ ���FP�F

� + �̂FP�F
G ) + �̂��H�

F��   1 ≤ $ ≤ %,      (65) 
 
−P�F

� ≤ ∑ ���F
�� + ��F

��)�
��F?� ≤ P�F

�  1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,      (66) 
 
−P�F

G ≤ 1 − ∑ ���F
G� + ��F

G�)�
��F?� ≤ P�F

G  1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1.      (67) 
 
Note that (65)–(67) are equivalent to (34)–(36). The term ∑ ���FP�F

� + �̂FP�F
G ) + �̂��H�

F��  in (65) is 
due to the uncertainty in demand and returns. 
 
(e) Constraints (37)–(39): Substituting the right-hand side of (18) in place of ��

� variable in 
��

� ≥ 0 gives 
 
��


� + ∑ 1�F��F
�� + �F��F

G�2�H�
F�� ≥ 0   1 ≤ $ ≤ %, � ∈ (�H�, � ∈ *�H�.        (68) 

 
Using the methodology described in Section 3, one can equivalently reformulate (68) as 
−��


� − ∑ 1�̅F��F
�� + �̅F��F

G�2�H�
F�� + ∑ 1��FQ�F

�� + �̂FQ�F
G�2�H�

F�� ≤ 0   1 ≤ $ ≤ %,                        (69) 
 
−Q�F

�� ≤ ��F
�� ≤ Q�F

�� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,      (70) 
 
−Q�F

G� ≤ ��F
G� ≤ Q�F

G� 1 ≤ $ ≤ %, 1 ≤ N ≤ $ − 1,      (71) 
 
Note that (69) is equivalent to (37) when multiplied by –1. Constraints (70) and (71) are the same 
as (38) and (39), respectively. 
 
(f) Constraints (40)–(42) and (43)–(45): Similar to part (e). 


