STATIC ANTHROPOMETRIC CHARACTERISTICS OF TURKISH PRIMARY SCHOOL CHILDREN: THE CASE OF ANKARA

Ertan Yesari Hastürk*
İlker Usta**

ABSTRACT

This investigation is aimed to update characteristics of static anthropometric measurements of Turkish primary school children aged between 7 and 12. In this purpose, the study groups consist of 246 boys and 198 girls in total: 41 boys and 33 girls from each age group between 7 and 12. As a result, 19 different measurements and their arithmetic means and standard deviations were determined of children for boys and girls separately. The ages of children and measurements were compared and correlation equations were defined for each value and indicated the 3rd, 10th, 25th, 75th, 90th and 97th percentile values of each anthropometric measurement. These findings can be used for any kind of new design and also these findings are suggested for using references for Turkish primary school children. Accordingly, the new definition is suggested as “variable standard values” instead of static standards which are used for all times.

Keywords: Anthropometry, Ergonomics, Variable Standard Values, Product Design.

TÜRKİYE’DE İLKÖĞRETİM OKULU ÖĞRENCİLERİNİN STATİK ANTHROPOMETRİK ÖZELLİKLERİ: ANKARA ÖRNEKLEMİ

ÖZET

Bu araştırma ile 7-12 yaş arasında bulunan Türkiye’deki İlkokul çocuklarının statik antropometrik değerlerine ait özelliklerin güncellenmesi amaçlanmıştır. Bu amaç doğrultusunda, 7-12 yaş arasındaki her bir yaş için, 41 erkek ve 33 kız öğrenci olacak şekilde toplam 246 erkek ve 198 kız öğrenciden oluşan bir örneklem grubu seçilmiştir. Araştırma sonunda kız ve erkek öğrenciler için ayrı ayrı olacak şekilde, 19 farklı ölçüm değeri ve bu değerlere ait aritmetik ortalamalar ve standart sapmalar hesaplanmıştır. Çocukların yaşlarına bağlı olarak, alınan ölçüm değerlerine ait korelasyon eşitlikleri hesaplandığı ve her antropometrik ölçüme ait 3, 10, 25, 75, 90 ve 97. persentil değerleri belirlendi. Bu bulgular, İlkokul çocukları için gerçekleştirilecek yeni tasarlarda kullanılabilecek üzere referans değerler olarak önerilmiştir. İnsan ölçüleri zamanla değişmektedir; bu nedenle, zamana değişmeyen ve yıllarca sabit olarak kullanılan standart değerler yerine, “değişken standart değerler” teriminin kullanılması tavsiye edilmiştir.

Anahtar Kelimeler: Antropometri, Ergonomi, Değişken Standart Değerler, Ürün Tasarımı.

* Corresponding author. Doctor, Lecturer, Hacettepe University, Hacettepe ASO 1.OSB Vocational School, Department of Industrial Product Design, ertanh@hacettepe.edu.tr
** Prof. Dr., Hacettepe University, School of Vocational Technology, Department of Wood Product Industrial Engineering, iusta@hacettepe.edu.tr
1. INTRODUCTION

In a great number of investigations on ergonomics, it is emphasized that the positive anthropometric changes depend on environmental conditions. There are meaningful differences between former and new data, which have same study groups, about the anthropometric values especially height. The authors had decided that these differences were depended on environmental factors changings and nutritional habits. These findings were accepted as positive improvement by authors (Komlos 2003, Neyzi et al. 1996). The body measures of individuals vary in relation to factors like age, gender, nutritional status, genetic structure etc. For this reason, in designing ergonomic products, it is necessary to consider the differences in body measures and adjust product sizes accordingly. The values are correlated, which is obtained from their investigation and former investigations, and realized the mathematical changing. According to their observations, they suggested to update of industrial product designs (Burdurlu et al. 2006).

The anthropometric investigations can be used for developing ergonomic products and designing living areas according to data of sample groups which are determined by scientific methods. The study groups were represented for whole investigation space. The investigations indicate that the changing environmental factors can affect positively anthropometric values such as height, weight, which is called secular trend. The results of the investigations show that the designers must consider these factors in new designs (Buchholz et al. 1992, Chung and Wong 2007, Jeong and Park 1990, Milanese and Grimmer 2004).

In addition to these studies, there are also a number of researches concerning the use of static anthropometric measurements in designing ergonomic products for students in Turkey (Duyar 1992, Elibol 2005). The determinations of secular changes and growing standards have been investigated by using anthropometric measurements in some of studies especially after the 1990s (Mayda 1997, Ozer 2007). Because static anthropometric measurements of children change in time, they are the subject of many similar researches. Therefore, similar investigations must be repeated and updated constantly. In this study, thus, anthropometric characteristics of students from the age of 7 to 12 in Turkey have been determined and updated.

2. MATERIAL AND METHODS

2.1. SUBJECTS

Anthropometric measures and percentiles data were collected from 444 children (246 boys, 198 girls) between the ages of 7-12 in public primary schools in Ankara, the capital of Turkey, the location of which is also geographically at the centre of country. The city has been an immigration attraction for people from all over the country since the foundation of the republic. That’s why it has a cultural and economic diversity that represents the demographic character of the whole country.
There is a registration system for public primary schools in Ankara initiated and conducted by the Turkish Ministry of Education. In this process, the most important factor is the distance students have to travel between school and their home. This has been regarded as one of the basic elements determining students’ socioeconomic status. In order to keep the study objective, schools were selected from three different districts, each coming from different social stratum (such as, lower, middle and upper income classes). These classifications were determined by using Household Budget Survey of Turkish Statistical Institute for 2006. Students in study groups were chosen randomly. Besides, age distribution groups were determined by asking students their dates of birth.

2. 2. APPARATUS

The weight measurements were taken by using digital scales and approximately 100 g sensitivity. Martin type anthropometer was used for linear measurements while Glisser Calliper was used for lateral measurements. It should also be reminded that international protocols were followed during the anthropometric measurement processes (Lohman et al. 1988).

2. 3. MEASUREMENTS

The primary aim of this research is to find solutions to ergonomic problems. All anthropometric measurement positions were determined according to Hertzberg standardization (1968) and International Biological Program (Weiner and Lourie 1969). The measurement positions used in investigation are given in Fig. 1 and Fig. 2. The anthropometric measurements, on the other hand, were taken from Prado-Leon et al. (2001) with some proper modification. In this way, 19 different static measurements were determined to be used in ergonomic values to design tools and equipment for school children between the ages of 7 and 12 in Turkey. Turkish education environment and data were also taken into consideration for more accurate results.
3. DATA ANALYSIS

Statistical Analysis showed that there are no significant differences between students from different economic status. Therefore all anthropometric measurements, taken from different economical categories, were evaluated together. Data were tested with Kruskal-Wallis (K-W) test to determine properties of distribution (Özdamar 2004). The non-parametric one-way K-W variance analysis (Özdamar 2004) was applied in order to find similarities in behaviour with or without normal distributions. According to K-W analysis,
data of each age group and for both sexes have not shown any abnormalities in terms of
distributions. After normal distributions were determined and the Duncan and Scheffe tests,
which depended on the average data and results, were applied and T-test was used to find if
there was any significant difference between variations in each age group or for each sex.

The correlation of H and R values were analysed for age and sex factor relationships
in the light of T-test results. However others were analysed only for the relationship
between age groups. In turning designs into products, there are a number of common
dimensions and these dimensions usually depend on the features of these products as well
as on user profiles. While some product designs need 3rd percentile, which is the smallest
anthropometric measurement, some other product design may require 97th percentile, the
greatest anthropometric measurement. This percentile values were calculated according to
the needs behind these designs. In this way, the ergonomic data have been obtained for
optimum solutions.

4. RESULTS

The minimum and maximum averages of anthropometric measurements and
standard deviation, provided in Table 1 and Table 2 (see appendix), were evaluated and
classified for both boys and girls separately according to their ages.

The Correlation Coefficient is different from zero in (p < .05) confidence interval so
that, these results are statically significant. And the model in Table 3 is available with in the
(p < .05) confidence interval.

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Coefficients of Correlation (p < .05)</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Height</td>
<td>0.771</td>
<td>y = 51.66 x + 863.33</td>
</tr>
<tr>
<td>B: Eye Height</td>
<td>0.782</td>
<td>y = 51.33 x + 759.67</td>
</tr>
<tr>
<td>C:Shoulder Height</td>
<td>0.788</td>
<td>y = 37.34 x + 736.66</td>
</tr>
<tr>
<td>D:Elbow Height</td>
<td>0.825</td>
<td>y = 34.67 x + 484.33</td>
</tr>
<tr>
<td>E:Elbow-Hand Extremity</td>
<td>0.817</td>
<td>y = 12.66 x + 206.38</td>
</tr>
<tr>
<td>F: Forward Arm Reach</td>
<td>0.803</td>
<td>y = 22.00 x + 316.00</td>
</tr>
<tr>
<td>G: Maximum Vertical Reach</td>
<td>0.809</td>
<td>y = 73.33 x + 953.69</td>
</tr>
<tr>
<td>H:Thorax Depth</td>
<td>boy 0.665</td>
<td>girl 0.672</td>
</tr>
<tr>
<td>J:Side Arm Reach</td>
<td>0.809</td>
<td>y = 25.34 x + 356.67</td>
</tr>
<tr>
<td>K: Maximum Bideltoideal Breadth</td>
<td>0.717</td>
<td>y = 9.32 x + 219.76</td>
</tr>
<tr>
<td>L:Elbow to Elbow Breadth</td>
<td>0.803</td>
<td>y = 13.00 x + 254.00</td>
</tr>
</tbody>
</table>
The results showed that there are no significant differences between the age groups or girls and boys, either. These data were tested by Duncan and Scheffé methods but these tests did not provide significant statistics. The influences of static anthropometric measurement on each age group and for each sex were tested by applying T-test. The significant values were investigated and it has been found out that the thorax depth (H) and buttock to popliteal length (R) values had differences dependent on sex. These differences can be evaluated as a “sex factor” with a visible influence on H and R anthropometric measurements. The correlation of static anthropometric measurements was also analysed and coefficients of correlation were determined for each relationship. Moreover, the prediction equation was determined and it has been discovered that it indicated the existence of a relationship between age and sex factors. These data were given in Table 3.

The result of study is presented as tables including gender (boys and girls) age (7-12 years old) that have been arranged separately. Standard deviations and means are also included. Comparison of percentiles were shown as A (Height), H (Thorax Depth), R (Buttock to popliteal length), and W (Weight) from Fig. 3 to Fig. 10 respectively. In almost all anthropometric investigations, A and W have important roles and they can be compared with each other. On the other hand, H and R values present the most drastic differences about the relationship between age and sex as far as this study is concerned.
Figure 3. Percentile curves of height (A) for boys

Figure 4. Percentile curves of height (A) for girls
Figure 5. Percentile curves of thorax depth (H) for boys

Figure 6. Percentile curves of thorax depth (H) for girls
Figure 7. Percentile curves of buttock to popliteal length (R) for boys

Figure 8. Percentile curves of buttock to popliteal length (R) for girls
Figure 9. Percentile curves of weight (W) for boys

Figure 10. Percentile curves of weight (W) for girls
5. DISCUSSION

This study, which reflects the anthropometrical diversity of socio-cultural and economic backgrounds in primary school students in Turkey, can be regarded as reference especially because the results of this study can be easily applied to same age groups in Turkey. If these investigations are supported by the government or private sector investments, results can be extended and used national-wide in a more accurate way simply because such researches may put forward valuable statistical data representing the anthropometric panorama of the country.

This investigation consists of anthropometric values in different date. When the values are arranged chronologically, it can be observed that the anthropometric values increased to one previous value (Table 4).

Table 4. The average heights for boys and girls from anthropometric investigations for different part of Turkey.

<table>
<thead>
<tr>
<th>Year</th>
<th>Area</th>
<th>Investigations</th>
<th>References</th>
<th>Boy (Age)</th>
<th>Girl (Age)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1950</td>
<td>Ankara</td>
<td>Binbaşoğlu, 1950</td>
<td></td>
<td>1230</td>
<td>1290</td>
</tr>
<tr>
<td>1954</td>
<td>Ankara</td>
<td>Bostancı, 1954</td>
<td></td>
<td>1243</td>
<td>1287</td>
</tr>
<tr>
<td>1968</td>
<td>Etimesgut</td>
<td>Nasdeh, 1968</td>
<td></td>
<td>1206</td>
<td>1270</td>
</tr>
<tr>
<td>1978</td>
<td>İstanbul</td>
<td>Neyzi, 1978</td>
<td></td>
<td>1255</td>
<td>1305</td>
</tr>
<tr>
<td>1979</td>
<td>Ankara</td>
<td>Neyzi, 1978</td>
<td></td>
<td>1247</td>
<td>1300</td>
</tr>
<tr>
<td>1986</td>
<td>Trabzon</td>
<td>Bakır, 1986</td>
<td></td>
<td>1246</td>
<td>1296</td>
</tr>
<tr>
<td>1990</td>
<td>Ankara</td>
<td>Günsay, 1990</td>
<td></td>
<td>1260</td>
<td>1309</td>
</tr>
<tr>
<td>1990</td>
<td>Diyarbakır</td>
<td>Hatipoğlu, 1990</td>
<td></td>
<td>1213</td>
<td>1270</td>
</tr>
<tr>
<td>1990</td>
<td>Gemlik</td>
<td>ikiz, 1990</td>
<td></td>
<td>1233</td>
<td>1292</td>
</tr>
<tr>
<td>1991</td>
<td>Gemlik</td>
<td>Şendemir, 1991</td>
<td></td>
<td>1233</td>
<td>1292</td>
</tr>
<tr>
<td>1995</td>
<td>Van</td>
<td>Akın, 1995</td>
<td></td>
<td>1163</td>
<td>1212</td>
</tr>
<tr>
<td>2002</td>
<td>Ankara</td>
<td>Özgün, 2002</td>
<td></td>
<td>1273</td>
<td>1330</td>
</tr>
</tbody>
</table>

The results also can be used as a reference and resource for designing better furniture, especially school furniture. Some anthropometric measurements are defined as manufacturing standards by standardization institutes. However, these measurements must be updated all the time to make sense because the validity of similar researches is always bound to change as the anthropometric values keep changing every day. This will supply not only new information for ergonomic designers to design new products but also will provide economical profit. Thus, it could be concluded that, anthropometric designs need a new standardization definition, which might be called “variable standard values”.

6. ACKNOWLEDGMENTS

Authors would like to thank Turkish Ministry of Education, local education boards and committees, school managers and, of course, students who took part in and supported this study.
REFERENCES

