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Abstract. In this paper, we show that If q(x) is prescribed on the ( ]2,π π  then the one spectrum 

suffices to determine q(x) on the interval ( .The potential function q(x) in a Sturm Liouville 

problem is uniquely determined with one spectra by using the Hochstadt and Lieberman’s method [2]. 
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Singüler Sturm-Liouville Problemi için Teklik Teoremi 

Özet: Bu makalede gösterdi ki q(x) ( ]2,π π  aralığında tanımlanmış ise (  aralığı üzerinde q(x) 

fonksiyonunu belirlemek için bir spektrum yeterlidir. Sturm-Liouville probleminde q(x) potansiyel 

fonksiyonu Hochstadt ve Lieberman metodu kullanılarak bir spektruma göre tek olarak belirlenir.  
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Introduction. 

In this paper, we shall be concerned with an inverse Sturm-Liouville operator. 

We consider the operator 
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with the boundary conditions  

 
)1(2

1),(lim 2/10 +Γ
=−→ ν

λ
ννx

xy
x

,            (2) 

   .           (3) 0

]
}

sin),(cos),( =′+ βλπβλπ yy

 The operator L is Self-Adjoint on the  and with (2)–(3) boundary 

conditions has a discret spectrum { . If condition (3) is replaced by  

[ π,02L
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So, we obtain a new spectrum { }. nλ′

 In this paper, we will consider a variation of the above inverse problem in that 

we will not require any information about a second spectrum but rather suppose q(x) is 

known almost everywhere on 
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 This information together with the spectrum {  of the problem (1)–(3) will be 

shown to determine q(x) uniquely on ( . 

}nλ
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Theorem : We get the operator (1) with the boundary conditions (2) and (3). Let  

be the spectrum of L with (2) and (3). Consider a second operator 

{ }nλ
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where  is summable on the interval (  and  ( )xq~ ]0,π
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on the interval 
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( )x

. Suppose that the spectrum of  with the (2)–(3) is also . 

Then  almost everywhere on . 
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Proof : Before proving the theorem we will first mention some results which will be 

need later. We take the following problems 
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 As known [6], the Bessel’s functions of the first kind of order ν  is following 

asymptotic relations: 
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It addition , It can be shown [5] that there exist a kernel H(x,t) continuous on 

 such that every solution of (7) and  (8) can be expressed in the form  [ ] [ ππ ,0,0 × ]
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Analogous results to (13) hold for  in terms of a kernel  which has 

similar properties of the . Using equation (13) and Its for  we find that  
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If the range of  and  is extended respect to the second argument 

and some straightforward computations , we rewrite (14) as  

( txH , ( txH ,~
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Now, we define the function  
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The zeros of Ω  are the eigenvalues of  or  subject to (2)-(3) and if the 

asymptotic results of y and are considered the  is a entire function of order 
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 If we multiply (7) by  and (9) by y and subtract  we obtain , after integration ,  y′
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Using (6) - (8) - (10) , we obtain  
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If the properties of y and  are considered , the function  is a entire function and 

for λ = , since the first term of (19) is zero ,  
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In addition using (13) and (21) for  π≤< x0  ,
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where M is constant. Now ,  
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( )λΨ  is a entire function. Asymptotic form of Ω  and with (23)  )(λ
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So , From the Liouville Theorem for all   λ
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From now on , substituting (15) into (21)  
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This can be written as  
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Letting  for real  , we see from Riemann -Lebesque Lemma that we must have  ∞→λ λ

   ∫ =
2

0

0)(

π

dxxQ                       (29) 

and  

 ∫ ∫ =















+






 −−

2

0

2

0),(
~~)()(

42
2

π π

τ

τττ
πνπ

τλ ddxxHxQQCos       (30) 

But from the completeness of the functions Cos , we see that  
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Since equation (31) is a Volterra integral equations, it has only the zero solution. Hence  
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