A Uniqueness the Theorem for Singular Sturm-Liouville Problem

Etibar S. PANAKHOV and Hikmet KOYUNBAKAN
Firat University , Department of Mathematics 23119 Elazığ / TURKEY
E-mail: epenahov@hotmail.com, hkb63@yahoo.com

Received:09.03.2004, Accepted: 16.03.2004

Abstract. In this paper, we show that If $q(x)$ is prescribed on the $(\pi / 2, \pi]$ then the one spectrum suffices to determine $q(x)$ on the interval $(0, \pi / 2)$. The potential function $q(x)$ in a Sturm Liouville problem is uniquely determined with one spectra by using the Hochstadt and Lieberman's method [2].

Key Words: Sturm-Liouville problem, Spectrum

Singüler Sturm-Liouville Problemi için Teklik Teoremi

Özet: Bu makalede gösterdi ki $q(x)(\pi / 2, \pi]$ aralığında tanımlanmış ise $(0, \pi / 2)$ aralığı üzerinde $q(x)$ fonksiyonunu belirlemek için bir spektrum yeterlidir. Sturm-Liouville probleminde $q(x)$ potansiyel fonksiyonu Hochstadt ve Lieberman metodu kullanılarak bir spektruma göre tek olarak belirlenir.

Anahtar Kelimeler: Sturm-Liouville problem, Spectrum

Introduction.

In this paper, we shall be concerned with an inverse Sturm-Liouville operator. We consider the operator

$$
\begin{equation*}
L y=-y^{\prime \prime}+\left[q(x)+\frac{v^{2}-1 / 4}{x^{2}}\right] y=\lambda y \tag{1}
\end{equation*}
$$

with the boundary conditions

$$
\begin{align*}
& \lim _{x \rightarrow 0} \frac{y(x, \lambda)}{x^{v-1 / 2}}=\frac{1}{2^{v} \Gamma(v+1)}, \tag{2}\\
& y(\pi, \lambda) \cos \beta+y^{\prime}(\pi, \lambda) \sin \beta=0 . \tag{3}
\end{align*}
$$

The operator L is Self-Adjoint on the $L_{2}[0, \pi]$ and with (2)-(3) boundary conditions has a discret spectrum $\left\{\lambda_{n}\right\}$. If condition (3) is replaced by

$$
\begin{equation*}
y(\pi, \lambda) \cos \gamma+y^{\prime}(\pi, \lambda) \sin \gamma=0 . \tag{4}
\end{equation*}
$$

So, we obtain a new spectrum $\left\{\lambda_{n}^{\prime}\right\}$.
In this paper, we will consider a variation of the above inverse problem in that we will not require any information about a second spectrum but rather suppose $q(x)$ is known almost everywhere on $\left(\frac{\pi}{2}, \pi\right]$.

This information together with the spectrum $\left\{\lambda_{n}\right\}$ of the problem (1)-(3) will be shown to determine $q(x)$ uniquely on $(0, \pi]$.

Theorem : We get the operator (1) with the boundary conditions (2) and (3). Let $\left\{\lambda_{n}\right\}$ be the spectrum of L with (2) and (3). Consider a second operator

$$
\begin{equation*}
\widetilde{L} y=-y^{\prime \prime}+\left[\widetilde{q}(x)+\frac{v^{2}-1 / 4}{x^{2}}\right] y=\lambda y \tag{5}
\end{equation*}
$$

where $\widetilde{q}(x)$ is summable on the interval $(0, \pi]$ and

$$
\begin{equation*}
q(x)=\widetilde{q}(x) \tag{6}
\end{equation*}
$$

on the interval $\left(\frac{\pi}{2}, \pi\right]$. Suppose that the spectrum of \widetilde{L} with the (2)-(3) is also $\left\{\lambda_{n}\right\}$. Then $q(x)=\widetilde{q}(x)$ almost everywhere on $(0, \pi]$.

Proof : Before proving the theorem we will first mention some results which will be need later. We take the following problems

$$
\begin{align*}
& L y=-y^{\prime \prime}+\left[q(x)+\frac{v^{2}-1 / 4}{x^{2}}\right] y=\lambda y \tag{7}\\
& \lim _{x \rightarrow 0} \frac{y(x, \lambda)}{x^{v-1 / 2}}=\frac{1}{2^{v} \Gamma(v+1)} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
& \widetilde{L} y=-y^{\prime \prime}+\left[\widetilde{q}(x)+\frac{v^{2}-1 / 4}{x^{2}}\right] y=\lambda y \tag{9}\\
& \lim _{x \rightarrow 0} \frac{\widetilde{y}(x, \lambda)}{x^{v-1 / 2}}=\frac{1}{2^{v} \Gamma(v+1)} \tag{10}
\end{align*}
$$

As known [6], the Bessel's functions of the first kind of order v is following asymptotic relations:

$$
\begin{align*}
& J_{v}(x)=\sqrt{\frac{2}{\pi x}}\left\{\cos \left[x-\frac{v \pi}{2}-\frac{\pi}{4}\right]+O\left(\frac{1}{x}\right)\right\}, \tag{11}\\
& J_{v}^{\prime}(x)=-\sqrt{\frac{2}{\pi x}}\left\{\sin \left[x-\frac{v \pi}{2}-\frac{\pi}{4}\right]+O(1)\right\} . \tag{12}
\end{align*}
$$

It addition, It can be shown [5] that there exist a kernel $H(x, t)$ continuous on $[0, \pi] \times[0, \pi]$ such that every solution of (7) and (8) can be expressed in the form

$$
\begin{equation*}
y(x, \lambda)=\frac{\sqrt{x}}{(\sqrt{\lambda})^{v}} J_{v}(\sqrt{\lambda} x)+\int_{0}^{x} H(x, t) \frac{\sqrt{t}}{(\sqrt{\lambda})^{v}} J_{v}(\sqrt{\lambda} t) d t \tag{13}
\end{equation*}
$$

Where the kernel $H(x, t)$ is solution of following problem

$$
\begin{aligned}
& \frac{\partial^{2} H(x, t)}{\partial x^{2}}+\frac{v^{2}-1 / 4}{x^{2}} H(x, t)=\frac{\partial^{2} H(x, t)}{\partial t^{2}}+\left[\frac{v^{2}-1 / 4}{t^{2}}+q(t)\right] H(x, t), \\
& 2 \frac{d H(x, t)}{d x}=q(x), \\
& H(x, 0)=0 .
\end{aligned}
$$

Analogous results to (13) hold for $\widetilde{y}(x, \lambda)$ in terms of a kernel $\tilde{H}(x, t)$ which has similar properties of the $H(x, t)$. Using equation (13) and Its for $\widetilde{y}(x, \lambda)$ we find that

$$
\begin{align*}
& y \tilde{y}=\frac{x}{(\sqrt{\lambda})^{2 v}} J_{v}^{2}(\sqrt{\lambda} x)+\int_{0}^{x}[H(x, t)+\tilde{H}(x, t)] \frac{\sqrt{x t}}{(\sqrt{\lambda})^{2 v}} J_{v}(\sqrt{\lambda} x) J_{v}(\sqrt{\lambda} t) d t+ \tag{14}\\
& \int_{0}^{x} H(x, t) \frac{\sqrt{x}}{(\sqrt{\lambda})^{v}} J_{v}(\sqrt{\lambda} t) d t \times \int_{0}^{x} \tilde{H}(x, s) \frac{\sqrt{x}}{(\sqrt{\lambda})^{v}} J_{v}(\sqrt{\lambda} s) d s .
\end{align*}
$$

If the range of $H(x, t)$ and $\widetilde{H}(x, t)$ is extended respect to the second argument and some straightforward computations, we rewrite (14) as

$$
\begin{equation*}
y \tilde{y}=\frac{1}{2}\left\{\frac{x}{(\sqrt{\lambda})^{2 v}}\left[1+\cos 2\left(\sqrt{\lambda} x-\frac{v \pi}{2}-\frac{\pi}{4}\right)\right]_{0}^{x} \int_{0}^{\tilde{H}}(x, \tau) \cos 2\left(\sqrt{\lambda} \tau-\frac{v \pi}{2}-\frac{\pi}{4}\right) d \tau\right\} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{\tilde{H}}(x, t)=2\left[H(x, x-2 \tau)+\widetilde{H}(x, x-2 \tau)+\int_{-x+2 \tau}^{x} H(x, s) \widetilde{H}(x, s-2 \tau) d s+\int_{-x}^{x-2 \tau} H(x, s) \widetilde{H}(x, s+2 \tau) d s\right] \tag{16}
\end{equation*}
$$

Now, we define the function

$$
\begin{equation*}
\Omega(\lambda)=y(\pi, \lambda) \cos \beta+y^{\prime}(\pi, \lambda) \sin \beta . \tag{17}
\end{equation*}
$$

The zeros of $\Omega(\lambda)$ are the eigenvalues of L or \widetilde{L} subject to (2)-(3) and if the asymptotic results of y and y^{\prime} are considered the $\Omega(\lambda)$ is a entire function of order $\frac{1}{2}$ of λ.

If we multiply (7) by y^{\prime} and (9) by y and subtract we obtain, after integration,

$$
\begin{equation*}
\left.\left(\widetilde{y} y^{\prime}-y \widetilde{y}^{\prime}\right)\right|_{0} ^{\pi}+\int_{0}^{x}(\widetilde{q}-q) y \widetilde{y} d x=0 \tag{18}
\end{equation*}
$$

Using (6) - (8) - (10) , we obtain

$$
\begin{equation*}
\left[\widetilde{y}(\pi, \lambda) y^{\prime}(\pi, \lambda)-y(\pi, \lambda) \widetilde{y}^{\prime}(\pi, \lambda)\right]_{0}^{\pi}+\int_{0}^{\frac{\pi}{2}}(\widetilde{q}-q) d x=0 . \tag{19}
\end{equation*}
$$

Now,

$$
\begin{equation*}
Q=\widetilde{q}-q \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
K(\lambda)=\int_{0}^{\frac{\pi}{2}} Q(x) y \widetilde{y} d x \tag{21}
\end{equation*}
$$

If the properties of y and \tilde{y} are considered, the function $K(\lambda)$ is a entire function and for $\lambda=\lambda_{n}$, since the first term of (19) is zero,

$$
\begin{equation*}
K\left(\lambda_{n}\right)=0 . \tag{22}
\end{equation*}
$$

In addition using (13) and (21) for $0<x \leq \pi$,

$$
\begin{equation*}
|K(\lambda)| \leq M \frac{1}{(\sqrt{\lambda})^{2 v}}, \tag{23}
\end{equation*}
$$

where M is constant. Now ,

$$
\begin{equation*}
\Psi(\lambda)=\frac{K(\lambda)}{\Omega(\lambda)}, \tag{24}
\end{equation*}
$$

$\Psi(\lambda)$ is a entire function. Asymptotic form of $\Omega(\lambda)$ and with (23)

$$
|\Psi(\lambda)|=O\left(\frac{1}{\lambda^{v+\frac{1}{2}}}\right)
$$

So , From the Liouville Theorem for all λ

$$
\begin{equation*}
\Psi(\lambda)=0 \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
K(\lambda)=0 . \tag{26}
\end{equation*}
$$

From now on , substituting (15) into (21)
$\frac{1}{2} \int_{0}^{\frac{\pi}{2}} Q(x)\left\{\frac{x}{(\sqrt{\lambda})^{2 v}}\left[1+\operatorname{Cos} 2\left(\sqrt{\lambda} x-\frac{v \pi}{2}-\frac{\pi}{4}\right)\right]+\int_{0}^{x} \widetilde{\tilde{H}}(x, \tau) \operatorname{Cos} 2\left(\sqrt{\lambda \tau}-\frac{v \pi}{2}-\frac{\pi}{4}\right) d \tau\right\} d x=0$

This can be written as

$$
\frac{x}{(\sqrt{\lambda})^{2 v}} \int_{0}^{\frac{\pi}{2}} Q(x) d x+\frac{\tau}{(\sqrt{\lambda})^{2 v}} \int_{0}^{\frac{\pi}{2}} \cos 2\left(\sqrt{\lambda} \tau-\frac{v \pi}{2}-\frac{\pi}{4}\right)\left[Q(\tau)+\int_{\tau}^{\frac{\pi}{2}} Q(x) \tilde{\tilde{H}}(x, \tau) d x\right] d \tau=0
$$

Letting $\lambda \rightarrow \infty$ for real λ, we see from Riemann-Lebesque Lemma that we must have

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} Q(x) d x=0 \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}} \cos 2\left(\sqrt{\lambda} \tau-\frac{v \pi}{2}-\frac{\pi}{4}\right)\left[Q(\tau)+\int_{\tau}^{\frac{\pi}{2}} Q(x) \widetilde{\widetilde{H}}(x, \tau) d x\right] d \tau=0 \tag{30}
\end{equation*}
$$

But from the completeness of the functions Cos, we see that

$$
\begin{equation*}
Q(\tau)+\int_{\tau}^{\frac{\pi}{2}} Q(x) \widetilde{\widetilde{H}}(x, \tau) d x=0, \quad 0<\tau<\frac{\pi}{2} \tag{31}
\end{equation*}
$$

Since equation (31) is a Volterra integral equations, it has only the zero solution. Hence

$$
q(x)=\widetilde{q}(x)
$$

almost everywhere.

References

1. Gasymov, M.G., The Definition of Sturm-Liouville Operator from Two Spectra, DAN SSSR, Vol.161, No:2, 1965, 274-276
2. Hochstadt, H. and Lieberman, B., An Invers Sturm Liouville Problem with Mixed Given Data. Siam J. Appl. Math. , Vol. 34 , No: 4 , 1978, 676-680
3. Levitan, B.M., On the Determination of the Sturm - Liouville Operator from One and Two Spectra, Math. USSR Izvestija, vol. 12, 1978, 179-193
4. Panakhov, E. S. , The definition of differential operator with peculiarity in zero on two spectrum. VINITI , N 4407-8091980, 1980, 1-16
5. Volk, V.Y., On Inverse Formulas for a Differential Equation with a Singularity at $x=0$, Usp.Mat.Nauk (N.S.) 8(56), 1953, 141-151
6. Watson, G., A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1962
