Fen Bilimleri Dergisi (2008)Cilt 29 Sayı 2

Some Estimates on Whitney Inequality for Differentiable Functions

Tuncay TUNÇ

Mersin University, Department of Mathematics, 33343, Mersin/TURKEY
E-mail: ttunc77@hotmail.com

Received: 11.08.2008, Accepted: 06.11.2008

Abstract: In this study, we are interested in finding some estimates of the constants W(k,r) $(k,r \in \mathbf{Y})$, in the well-known Whitney Inequality for differentiable functions on the closed interval [-1,1]:

$$E_{k+r-1}(f,[-1,1]) \le W(k,r) \left(\frac{2}{k}\right)^r W_k \left(\frac{2}{k},f^{(r)},[-1,1]\right).$$

Key Words: Whitney Inequality, divided differences, interpolation.

Diferansiyellenebilir Fonksiyonlar için Whitney Eşitsizliği Üzerine Bazı Sonuçlar

Özet: Bu çalışmada, [-1,1] kapalı aralığı üzerinde diferansiyellenebilir fonksiyonlar için Whitney Eşitsizliği olarak bilinen:

$$E_{k+r-1}(f,[-1,1]) \le W(k,r) \left(\frac{2}{k}\right)^r w_k \left(\frac{2}{k},f^{(r)},[-1,1]\right)$$

eşitsizliğindeki W(k,r), $(k,r \in \mathbb{Y})$, sabitleri için üst sınırların bulunması üzerinde durulmuştur.

Anahtar Kelimeler: Whitney Eşitsizliği, kesirli farklar, interpolasyon.

1. Introduction and Main Results

Let Ψ denote the set of natural numbers, $\Psi_0 := \Psi \cup \{0\}$. We denote by \mathbf{P}_n , $n \in \Psi_0$, the space of algebraic polynomials of total degree at most n, by C[a,b] the space of the real valued continuous functions on the closed interval [a,b] equipped with the uniform norm:

$$||f||_{C[a,b]} := \max_{x \in [a,b]} |f(x)|$$

and by $C^r[a,b]$, $r \in \Psi_0$, the set all r-times continuously differentiable functions $f \in C[a,b]$; $C^0[a,b] := C[a,b]$. The deviation of $f \in C[a,b]$ from \mathbf{P}_n is defined by

$$E_n(f,[a,b]) := \inf_{P_n \in \mathbf{P}_n} ||f - P_n||_{C[a,b]}.$$

The purpose of the paper is to estimate the constants W(k,r), $k,r \in \mathbb{Y}$, in the well known Whitney Inequality: If $f \in C[a,b]$, $f \in C^r[a,b]$, then

$$E_{k+r-1}\left(f,\left[a,b\right]\right) \leq W\left(k,r\right)\left(\frac{b-a}{k}\right)^{r} W_{k}\left(\frac{b-a}{k},f^{(r)},\left[a,b\right]\right)$$

where

$$W_k\left(t,g,\left[a,b\right]\right) = \sup_{0 < h \le t} \sup_{x \in \left[a,b-kh\right]} \left|\Delta_h^k g\left(x\right)\right|$$

is the k – th modulus of smoothness of the function g, and

$$\Delta_h^k g(x) = \sum_{j=0}^k (-1)^{k-j} \binom{k}{j} g(x+jh)$$

is an k – th finite difference of g.

Many mathematicians have studied to estimate the Whitney constants: see, say, [1-8] for the references. Burkill [1] obtained the only known precise result: W(2,0)=1/2. Whitney [2] proved that $1/2 \le W(k,0) < \infty$ for each $k \in \mathbb{Y}$ and gave numerical estimates for W(k,0) when $k \le 5$. In 1982, Sendov [3] conjectured that $W(k,0) \le 1$ for all k. However, this conjecture has been proved only for "small" k's: Whitney [2] for k=3, Kryakin [4] for k=4 and Zhelnov [5-6] for k=5,6,7,8. In general case, the most recent result is due to Gilewicz, Kryakin and Shevchuk [7] who proved that

$$W(k,0) \le 2 + 1/e^2$$
.

It follows from Lemma 3 in [8] that

$$W(k,1) \le 1/(e\mathbf{s}_k), \quad k \in \mathbf{Y}$$

where $s_k = 1+1/2+...+1/k$. For r = 2,3,4, the estimates of W(k,r) were obtained in [9]:

$$W(k,r) \le \left(\frac{r}{es_{k+r-1}}\right)^r, \qquad k \in \Psi.$$

Besides, in [9], the following estimates of W(k,r) are obtained:

$$W(1,r) \le \frac{1}{r! 2^{2r+1} \cos \frac{p}{2(r+1)}}, \quad r \in \Psi,$$

$$W(2,r) \leq \frac{1}{r!2^{r^*}\cos^2\frac{p}{2r^*}}, \qquad r \in \mathbf{Y},$$

where $r^* := 2^{\circ}_{\alpha}(r+1)/2 + 1$, where $\S a^{\circ}$ stands for the integral part of the number a.

The main results of the paper are the following.

Theorem 1. For any $f \in C^r[-1,1]$, there is a polynomial $P_{k+r-1} \in \mathbf{P}_{k+r-1}$ such that

$$|f(x)-P_{k+r-1}(x)| \le \frac{k^k}{2^k k! r!} \Big((1-x^2)^1 \Pi(x) + \frac{3}{2^{k+r}} \Big) W_k \Big(2/k, f^{(r)}, [-1,1] \Big).$$

$$x \in [-1,1]$$
, where $\mathbf{l} := {}^{\textcircled{0}}_{\mathbf{u}}(r+1)/2 \mathbb{B}$ and $\Pi(x) = \prod_{j=0}^{k} (x+1-2j/k)$.

Theorem 2. We have

$$W(k,r) \le \frac{1}{r!} \left(\frac{k(\mathbf{l}+1)}{e\mathbf{s}_{k+1}} \right)^{1+1}$$

if
$$k > 2^{1+1} + 1$$
.

In Section 2, will be given some relevant facts on divided differences, and in Section 3, we shall prove the Theorems 1 and 2.

2. Some Relevant Facts

In this section we shall give some auxiliary facts and notations which we will need in the proofs of the theorems.

Let $k \in \mathbb{Y}$ and $\{y_j\}_{j=0}^k$ be a collection of distinct points $y_j \in [a,b]$. Recall, the divided difference of a function $g:[a,b] \to \mathbf{i}$ at the points $\{y_j\}_{j=0}^k$ is defined by

$$[y_0, y_1, \mathbf{L}, y_k; g] = \sum_{j=0}^k \frac{g(y_j)}{\prod_{i=0}^k \sum_{j\neq i} (y_j - y_i)}$$

By the definition, it can be easily seen that the equality

$$\int_{c}^{d} [y_{0}, y_{1}, \mathbf{L}, y_{k}; h(\cdot, y)] dy = [y_{0}, y_{1}, \mathbf{L}, y_{k}; \int_{c}^{d} h(\cdot, y) dy]$$
(2.1)

holds for any continuous function h defined on the rectangle $R := [a,b] \times [c,d]$.

Denote by $L(x; g; y_0, y_1, \mathbf{L}, y_k)$ the Lagrange interpolation polynomial of degree $\leq k$ that interpolates the function g at the points y_j , $j = \overline{0,k}$. Then, as well known

$$g(x) - L(x; g; y_0, y_1, \mathbf{L}, y_k) = [x, y_0, y_1, \mathbf{L}, y_k; g] \prod_{j=0}^{k} (x - y_j).$$

Now, let $n \in \mathbb{Y}$ and $\{x_i\}_{i=0}^n$ be a collection of points $x_i \in [a,b]$ that may coincide. Let $\{y_j\}_{j=0}^k$ be a collection of distinct points $y_j \in [a,b]$ such that each of n+1 points x_i coincides with one of the points y_j . Let a point y_j coincides exactly with s_j points x_i , then the number $p_j = s_j - 1$ is called *multiplicity* of the point y_j . Clearly, $\sum_{j=0}^k s_j = n+1$, that is $\sum_{j=0}^k p_j = n-k$. Let a function $g \in C[a,b]$ have p_j first derivatives at a neighborhood of each point y_j . The generalized divided difference of order n of the function g at the points x_i , i = 0, 1, ..., n, is defined by

$$[x_0, x_1, \mathbf{L}, x_n; g] \coloneqq \left(\prod_{j=0}^k \frac{1}{p_j!} \right) \frac{\partial^{n-k}}{\partial y_0^{p_0} \partial y_1^{p_1} \mathbf{L} \partial y_k^{p_k}} [y_0, y_1, ..., y_k; g].$$

For n=0, set $[x_0;g] = g(x_0)$. The generalized divided differences possess the same properties as the ordinary divided differences. Say, if $x_0 \neq x_n$, then

$$[x_0, x_1, \mathbf{L}, x_n; g] = \frac{[x_1, x_2, \mathbf{L}, x_n; g] - [x_0, x_1, \mathbf{L}, x_{n-1}; g]}{(x_n - x_0)},$$
(2.2)

and let $L(x; g; x_0, x_1, \mathbf{L}, x_n)$ be the Hermite-Lagrange interpolation polynomial of degree $\leq n$, that interpolates the function g at the points $y_0, y_1, \mathbf{L}, y_k$ and interpolates all first p_j derivatives of g at the each point y_j , that is;

$$L^{(s)}(x;g;x_0,x_1,\mathbf{L},x_n)=g^{(s)}(y_i), \quad j=\overline{0,k}, s=\overline{0,p_i}$$

where $g^{(0)}(x) := g(x)$, then

$$g(x) - L(x; g; x_0, x_1, ..., x_k) = [x, x_0, x_1, \mathbf{L}, x_k; g] \prod_{j=0}^{k} (x - x_j).$$
 (2.3)

The following lemma which proved in [9] enables to generalize the Lemma 3 of Zhuk and Natanson in [8].

Lemma 1. Let $r_0 \in \mathbb{Y}_0$, $n \in \mathbb{Y}$, $r_0 \le n$ and $\{x_i\}_{i=0}^n$ be an arbitrary collection of points $x_i \in [a,b]$. If a function $f \in C[a,b]$ has the r_0-1 -st absolutely continuous derivative on [a,b], then

$$[x_0, x_1, \mathbf{L}, x_n; f] = [x_r, x_{r+1}, \mathbf{L}, x_n; f_r],$$
 (2.4)

holds for each $r = 0,1,\mathbf{L}$, r_0 , where $f_0(x) := f(x)$, $f_1(x) := \int_0^1 f'(xt + (1-t)x_0)dt$ and, for t > 1,

$$f_r(x) := \int_0^1 \int_0^{t_1} \mathbf{L} \int_0^{t_{r-1}} f^{(r)}(xt_r + (t_{r-1} - t_r)x_{r-1} + \mathbf{L} + (1 - t_1)x_0) dt_r \mathbf{L} dt_1.$$

3. Proofs of Theorems

Throughout this section, [a,b]:=[-1,1], $\mathbf{l}:= {}^{\textcircled{c}}_{\mathbf{u}}(\mathbf{r}+1)/2\mathbf{d}$ where $\S{a}^{\mathbf{u}}$ stands for the integral part of a, and

$$x_{j} = \begin{cases} (-1)^{s}, & j = k + s, \ s = 1, 2, \mathbf{L}, 2\mathbf{l} \\ -1 + \frac{2j}{k}, & j = 0, 1, \mathbf{L}, k. \end{cases}$$

To shorten notation, we write |g|| and $w_k(g)$ instead of $|g||_{C[-1,1]}$ and $w_k(2/k, g, [-1,1])$, respectively.

Prof of Theorem 1. Let L_{k+21} be the Hermite-Lagrange interpolation polynomial of degree $\leq k+21$, which interpolates the function f at the points $x_0, x_1, \mathbf{L}, x_{k+21}$. By Newton's Formula, the coefficients of x^{k+21} and x^{k+21-1} in the polynomial L_{k+21} are

$$A_{k+21} = [x_0, x_1, \mathbf{L}, x_{k+21}; f],$$

(see, for instance [10, p.120]) and

$$\begin{aligned} A_{k+2\mathbf{l}-1} &= [x_0, x_1, \mathbf{L}, x_{k+2\mathbf{l}-1}; f] + A_{k+2\mathbf{l}} \\ &= \frac{[x_0, x_1, \mathbf{L}, x_{k+2\mathbf{l}-1}; f] + [x_0, x_1, \mathbf{L}, x_{k+2\mathbf{l}-2}, x_{k+2\mathbf{l}}; f]}{2} \end{aligned}$$

respectively.

Consider the polynomial

$$P_{k+r-1}(x) = L_{k+21}(x) - \frac{A_{k+21}}{2^{k+21-1}} T_{k+21}(x) - (2\mathbf{1} - r) \frac{A_{k+21-1}}{2^{k+21-2}} T_{k+21-1}(x),$$

of degree $\leq k+r-1$, where $T_n(x)=\cos(n\arccos x)$ is the n-th Chebyshev polynomial. The polynomial P_{k+r-1} is the desired one in Theorem 1. Let r be odd, i.e. $r=2\mathbf{l}-1$. Since $||T_n||=1$, we conclude that

$$|f(x) - P_{k+r-1}(x)| \le |f(x) - L_{k+21}(x)| + \frac{|A_{k+21}|}{2^{k+21-1}} + \frac{|A_{k+21-1}|}{2^{k+21-2}} =: i_1 + i_2 + i_3.$$

First we estimate $i_2 + i_3$. By using (2.2), (2.4) and (2.1), we obtain

$$A_{k+21} = \frac{1}{2} \left([x_0, x_1, \mathbf{L}, x_{k+21-2}, x_{k+21}; f] - [x_0, x_1, \mathbf{L}, x_{k+21-1}; f] \right)$$

$$= \frac{1}{2} \int_0^1 \int_0^{t_1} \mathbf{L} \int_0^{t_{r-1}} ([x_0, x_1, \mathbf{L}, x_k; g_0 - g_1] dt_r \mathbf{L} dt_1,$$

and similar arguments provide

$$A_{k+2\mathbf{1}-1} = \frac{1}{2} \int_{0}^{1} \int_{0}^{t_{1}} \mathbf{L} \int_{0}^{t_{r-1}} [x_{0}, x_{1}, \mathbf{L}, x_{k}; g_{0} + g_{1}] dt_{r} \mathbf{L} dt_{1}$$

where $g_i(x) := f^{(r)} \left((1+x)t_r - 2\sum_{j=2}^{r-1} (-1)^j t_j + t_1 + (1-t_1)(-1)^i \right), \quad i = 0, 1.$ Since, for

both i = 0,1,

$$\begin{aligned} \left\| \left[x_0, x_1, \mathbf{L}, x_k; g_i \right] \right\| &= \left| \frac{k^k}{2^k k!} \Delta_{2/k}^k g_i \left(x_0 \right) \right| \le \frac{k^k}{2^k k!} W_k \left(g_i \right) \\ &= \frac{k^k}{2^k k!} W_k \left(\frac{2}{k} t_r, f^{(r)}, [-1, 1] \right) \le \frac{k^k}{2^k k!} W_k \left(f^{(r)} \right) \end{aligned}$$

Then

$$i_{2} + i_{3} = \frac{\left|A_{k+21}\right|}{2^{k+21-1}} + \frac{\left|A_{k+21-1}\right|}{2^{k+21-2}}$$

$$\leq \frac{3k^{k}}{2^{2k+r}k!} \int_{0}^{t} \int_{0}^{t_{1}} \mathbf{L} \int_{0}^{t_{r-1}} w_{k} \left(f^{(r)}\right) dt_{r} \mathbf{L} dt_{1} = \frac{3k^{k}}{2^{2k+r}k!r!} w_{k} \left(f^{(r)}\right).$$

Let us now estimate i_1 . By using (2.2), (2.3), (2.4) and (2.1), we obtain

$$\begin{split} f(x) - L_{k+21}(x) &= \left(x^2 - 1\right)^1 \Pi(x) \left[x_0, x_1, \mathbf{L}, x_{k+21}, x; f\right] \\ &= \frac{\left(x^2 - 1\right)^1 \Pi(x)}{4} \left(\left[x_0, x_1, \dots, x_{k+21-4}, x_{k+21-2}, x_{k+21}, x; f\right] \\ &- 2\left[x_0, x_1, \dots, x_{k+21-2}, x; f\right] + \left[x_0, x_1, \dots, x_{k+21-3}, x_{k+21-1}, x; f\right] \right) \\ &= \frac{\left(x^2 - 1\right)^1 \Pi(x)}{4} \int_0^1 \int_0^{t_1} \mathbf{L} \int_0^{t_{r-1}} \left[x_0, x_1, \dots, x_k; g_2 - 2g_3 + g_4\right] dt_r \mathbf{L} dt_1. \end{split}$$

where

$$g_i(u) = f^{(r)} \left(ut_r - 2(t_{r-1} - t_{r-2} + \mathbf{L} + t_4) + (1 - x)t_3 + a_i \right)$$

i = 2, 3, 4, where $a_2 = 1 - (1 - x)t_2$, $a_3 = 1 - 2t_1 + (1 + x)t_2$ and $a_4 = (1 + x)t_2 - 1$. Therefore, as in the estimation of $i_2 + i_3$, we obtain

$$i_1 = |f(x) - L_{k+21}(x)| \le \frac{k^k (1-x^2)^1 |\Pi(x)|}{2^k k! r!} W_k (f^{(r)}),$$

which completes the proof for the case r is odd, but the same conclusion can be drawn for the case r is even, in this manner, Theorem 1 is proved.

The following lemma will be needed in the proof Theorem 2. Set h = 2/k, and recall, the logarithm with base $a > 0 (\neq 1)$, is defined by $\log_a x := \log x / \log a$, x > 0.

Lemma 2. Let $k \ge 2$. For $1+1 < \log_2(k-1)$, the equality

$$\max_{x \in [-1,1]} \left| \left(x^2 - 1 \right)^1 \Pi(x) \right| = \max_{x \in [-1,-1+2h]} \left| \left(x^2 - 1 \right)^1 \Pi(x) \right|$$

holds.

Proof. For $-1+h \le y \le -h/2$, consider the function

$$H(y) := \left| \frac{\left((y+h)^2 - 1 \right)^1 \Pi(y+h)}{\left(y^2 - 1 \right)^1 \Pi(y)} \right| = \frac{(1+y+h)}{(1-y)} \left(1 - \frac{h(2y+h)}{\left(1 - y^2 \right)} \right)^1.$$

Since H(-h/2)=1, H'(-h/2)>0 and H' has only one zero in [-1+h,-h/2] for $\mathbf{l} \le (k-2)(k+1)/(2k)$, it is sufficient to show that $H(-1+h) \le 1$. Indeed,

$$H(-1+h) = \frac{2}{k-1} \left(\frac{2(k-2)}{k-1} \right)^{1} \le 1,$$

for $1+1 < \log_2(k-1)$. The proof is complete, since $\log_2(k-1)-1 < (k-2)(k+1)/(2k)$, for all $k \ge 2$.

Proof of Theorem 2. In order to prove Theorem 2 it is enough to check the inequality

$$\frac{k^{k+r}}{2^{k+r}k!r!} \left(\left(1 - x^2 \right)^{\mathbf{l}} \left| \Pi(x) \right| + \frac{3}{2^{k+r}} \right) \le \frac{1}{r!} \left(\frac{k(\mathbf{l} + 1)}{es_{k+1}} \right)^{\mathbf{l} + 1}, \tag{3.1}$$

 $x \in [-1,1]$. First, we prove the estimate

$$\frac{\left| \left(x^{2} - 1 \right)^{\mathbf{l}} \Pi(x) \right|}{k^{-k} 2^{k} k!} \le \max \left\{ \frac{1}{2} \left(\frac{4(\mathbf{l} + 1)}{ek \left(\mathbf{s}_{k} + \mathbf{l} / k \right)} \right)^{\mathbf{l} + 1}, \frac{1}{e^{2}} \left(\frac{4(\mathbf{l} + 1)}{ek \left(\mathbf{s}_{k} - 2 + \mathbf{l} / k \right)} \right)^{\mathbf{l} + 1} \right\}, (3.2)$$

for all $x \in [-1,1]$ and $1+1 < \log_2(k-1)$. Let $C_{k,1}$ denote the right hand of (3.2).

If -1 < x < -1 + h and u = k(x+1)/2 then 0 < u < 1 and

$$\frac{\left| \left(x^{2} - 1 \right)^{\mathbf{l}} \Pi(x) \right|}{k^{-k} 2^{k} k!} = \frac{2^{21+1}}{k^{1+1}} u^{1+1} \left(1 - \frac{u}{1} \right) \left(1 - \frac{u}{2} \right) \mathbf{L} \left(1 - \frac{u}{k-1} \right) \left(1 - \frac{u}{k} \right)^{1+1} \\
\leq \frac{2^{21+1}}{k^{1+1}} u^{1+1} \left(1 - \frac{u \left(\mathbf{s}_{k} + \mathbf{l} / k \right)}{k+1} \right)^{k+1} \\
\leq \frac{2^{21+1} u^{1+1} e^{-(\mathbf{s}_{k} + \mathbf{l} / k)u}}{k^{1+1}} \leq \frac{1}{2} \left(\frac{4(\mathbf{l} + 1)}{ek \left(\mathbf{s}_{k} + \mathbf{l} / k \right)} \right)^{1+1}.$$

On the other hand, applying similar arguments to the case -1+h < x < -1+2h, and using Lemma 2, we obtain (3.2).

Now, taking into account (3.2) and the inequality $k! \ge k^k e^{-k} \sqrt{2pk}$ which follows from Stirling's formula, we get

$$r!W(k,r) \le \left(\frac{k}{2}\right)^r C_{k,1} + \frac{3e^k k^r}{4^{k+r}\sqrt{2pk}}.$$

It is easy to check that

$$\left(\frac{k}{2}\right)^{\!r} C_{k,1} + \frac{3e^k k^r}{4^{k+r} \sqrt{2pk}} \le \left(\frac{k(1+1)}{es_{k+1}}\right)^{\!\!1+1},$$

for $\mathbf{l} + 1 < \log_2(k-1)$. Thus, Theorem 2 is proved.

Acknowledgment: The author thanks Prof. Dr. I. A. Shevchuk and Prof. Dr. F. Abdullayev for the formulation of the problem and fruitful discussions on this paper.

References

- [1] H. Burkill, H., Proc. Lond. Math. Soc., 1952, 3, 150-174.
- [2] H. Whitney, J. Math. Pures Appl., 1957, 36, 67-95.
- [3] Bl. Sendov, C. R. Acad. Bulgare. Sci., 1982, 35, 1-11.
- [4] Yu. V. Kryakin, Izv. Ross. Akad. Nauk Ser. Mat. 1997, 61(2), 95-100.
- [5] O.D. Zhelnov, East J. Approx., 2002, 8(1), 1-14.
- [6] O.D. Zhelnov, *Whitney inequality and its generalization*, (Dissertation), Inst. of Math.Nat. Ac. of Sci. of Ukraine, Kiev, 2004, p. 129.
- [7] Z.J. Gilewicz, Yu.V. Kryakin, and I. A. Shevchuk, *J. Approx. Theory*, 2002, 119, 271-290.
- [8] V.V. Zhuk, G.I. Natanson, Vestnik Leningrad Univ., 1984, 1, 5-11.
- [9] T. Tunc, Methods of Functional Analysis and Topology, 2007, 13(1), 95-100,
- [10] R.A. DeVore, G.G. Lorentz, *Constructive Approximation*, Springer-Verlag, Berlin Heidelberg, 1993, p.452.