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Abstract: In this study, we are interested in finding some estimates of the constants W (k,r) (k,rT ¥),

in the well-known Whitney Inequality for differentiable functions on the closed interval [- 1,1] :

Ekﬂ_l(f,[-],1])£W(k,r)§§gwk§%, ('),[-1,1]%
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Diferansiyellenebilir Fonksiyonlar i¢cin Whitney Esitsizligi
Uzerine Bazi Sonuclar
Ozet: Bu calismada, [-11] kapal araligr iizerinde diferansyellenebilir fonksiyonlar igin Whitney

Esitsizligi olarak bilinen:

26 & . 6
Ek+r-1( f ’[- J’l]) £W(k’r)8EB Wk 8?’ f( )’[- ll]a
esitsizligindeki W (k,r), (k,rT ¥), sabitleri igin tist smirlarin bulunmas: tizerinde durulmustur.

Anahtar Kelimeler: Whitney Esitsizligi, kesirli farklar, interpolasyon.
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Introduction and M ain Results

Let ¥ denote the set of natural numbers, ¥ :=¥E{0}. We denote by
P,, ni ¥, the space of algebraic polynomials of total degree at most n, by C[a,b]
the space of the real valued continuous functions on the closed interval [a, b] equipped

with the uniform norm:
[y = ma| £ (%)
and by C'[a,b], rT ¥,, the set al r- times continuously differentiable functions

f1 C[a,b]; C°[a,b]:=C[a,b]. Thedeviationof f1 C[a,b] from P, isdefined by

E,(f.[ab])=int [ f- Rlyy-

n' 'n

The purpose of the paper is to estimate the constants W (k,r), k,ri ¥, inthe

well known Whitney Inequality: If f1 C[a,b], fT C'[a,b], then

ab-ag  ab-a
&k g &k’

Eora(f.[20]) EW(K,r) f<f>,[a,b]g

where

Wk(t,g,[a,b]) sup sup |Dhg |

0<h£t X [a,b- kh]

isthe k- th modulus of smoothness of the function g, and

isan k- thfinite difference of g.

Many mathematicians have studied to estimate the Whitney constants. see, say,
[1-8] for the references. Burkill [1] obtained the only known precise result:

W(2,0) =1/2. Whitney [2] proved that 1/2£W (k,0)<¥ for each ki ¥ and gave
numerical estimates for W (k,0)when k£5. In 1982, Sendov [3] conjectured that
W(k,0)£1 for all k. However, this conjecture has been proved only for "small" k's:
Whitney [2] for k=3, Kryakin [4] for k=4 and Zhelnov [5-6] for k=5,6,7,8. In

general case, the most recent result is due to Gilewicz, Kryakin and Shevchuk [7] who
proved that
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W (k,0)£2+1/€*.
It follows from Lemma 3 in [8] that

W(k1)£Y(es,), ki ¥

where s, =1+1/2+...+1/k. For r =234, the estimates of W (k,r) were obtained in

[9]:

Ny
& r O

w k’r £ - kT ¥.
( ) ggkﬂ-lﬂ

Besides, in [9], the following estimates of W(k,r) are obtained:

1 n
W(:Lr)£ r|22r+1COS 20 ! rl ¥’
W2ne—— ¥,
" r12" cos? B

where r*:=2Q(r +1) /23+1, where §a" stands for the integral part of the number a.

The main results of the paper are the following.

Theorem 1. For any f1 C'[-11], thereisapolynomial R, ;T P,,,., suchthat

K 2\!
| (x)- pk+r_l(x)|£m§1- x2) P (x)+ For _Wk(2/k £, [-11).
xT [-11], where 1'=4(r +1)/23 and P(x):CN)';:O(x+1- 2j/K).
Theorem 2. We have

Wk, )Elgk(l );|+1

ré s, g

if k>2""+1.
In Section 2, will be given some relevant facts on divided differences, and in

Section 3, we shall prove the Theorems 1 and 2.

. Some Relevant Facts

In this section we shall give some auxiliary facts and notations which we will

need in the proofs of the theorems.
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Let ki ¥ and {yj}fzobe a collection of distinct points ij [a,b]. Recall, the

divided difference of afunction g:[a,b]® j at thepoints{ y,}'_, isdefined by

a(y;)
Yor Vi Ly Y O a =
[ ] JOol Oll'(yJ y')

By the definition, it can be easily seen that the equality
O [Yor Yool Y NG, WY =¥, Vi L i ) C )] (21)
holds for any continuous function h defined on the rectangle R:=[a,b] [c,d].
Denote by L(x;9;Y,, ¥:,L, ¥, ) the Lagrange interpolation polynomial of degree

£k that interpolates the function g at the points y,, j =0,k. Then, aswell known
&
909 L(X 85 Yor Yoo o Vi) =[% Yo ¥ L s 9] O (x- v )
=0

Now, let nT ¥ and {x}", be a collection of points x I [a,b] that may coincide. Let
{y,}'., be a collection of distinct points ij [a,b] such that each of n+1 points x
coincides with one of the points y,. Let apoint y, coincides exactly with s; pointsx,
then the number p, =s,-1 is caled multiplicity of the point y,. Clearly,
é"j(:osj =n+1, tha is é-lj(:o p,=n- k. Let a function gT C[a,b] have p, first
derivatives at a neighborhood of each point y;. The generalized divided difference of

order n of the function g at the pointsx , i =0,1,...,n, isdefined by

ﬂn- k
=0 p, gﬂyo"‘)ﬂyflLﬂyk

[%: %L, %5 0] = g [Yor Yoo Vi 0]

For n=0, set [%,;9]:=9(%). The generalized divided differences possess the same
properties as the ordinary divided differences. Say, if X, * x,, then

(%% L% 91 D% % L X001 2.2
06~ %)

and let L(X g;%,%,L,x,) be the Hermite-Lagrange interpolation polynomial of

[X, %, L, %, 9] =

degree £ n, that interpolates the function g at the points y,,y,,L, Yy, and interpolates

al first p, derivativesof g at the each pointy, , that is;
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L9 (% 9%, %, L%, ) =99 (y;), j=0ks=0,p,

where g@(x) := g(x), then

9(x) - L(X;g;xo,xl,---,xk)=[X1Xo,><1,L,Xk;g]§(X- X, ) (2.3)
The following lemma which proved in [9] enables to generalize the Lemma 3 of
Zhuk and Natanson in [8].
Lemma 1. Let r,1 ¥, nl ¥, r,£n and {x}_ be an arbitrary collection of points
x 1 [a,b]. If afunction f1 C[a,b] hasthe r, - 1-st absolutely continuous derivative on
[a,b], then
[%0s X0 s X5 BT =060 X Ly X5 (2.4)
holds for each r=01L,r,, where f,(x):=f(X), f,(X) :=(§f¢(xt+(1- t)x,)dt and,

forr >1,

1ttt

f.(X) == O VO, +t,. - t, )%, HL+(1- t)x;)dt, Ldt,.

00 0

. Proofsof Theorems

Throughout this section, [a,b]:=[-11], 1:=9(r+1)/25 where §a" stands for
the integral part of a, and

1(-D°, j=k+s,s=12L,2l
X _1 .
T+ 2l =01l k
,t k! ’ 3 I\

To shorten notation, we write | gl and w(g) instead of | gl..,, and
w, (2/k,9,[-11]), respectively.

Prof of Theorem 1. Let L,,,, be the Hermite-Lagrange interpolation polynomial of
degree £k+2l, which interpolates the function f at the pointsx,,x, L, X, .- By
Newton's Formula, the coefficients of x*?' and x“**'"* in the polynomial L,,,, are

A<+2I :[XO’XI’L’Xk+2I; f]!
(see, for instance [10, p.120]) and
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Acarr =% %L X1 F1+ Ay

_ Do b Xearas 14D X0 s Xaar 20 s ]
2

respectively.
Consider the polynomial

I:T<+r-1(x) = I—k+2l (X) zﬁ;fl T k+21 (X) - (2| - ) Q::ZZII 1Tk+2| 1(X)a

of degree £k +r - 1, where T, (X) = cos(narccosx) is the n-th Chebyshev polynomial.

The polynomial R, , is the desired one in Theorem 1. Let r be odd, i.e.r =21 -

+r-1

Since [T, | =1, we conclude that

| f (X) I:T<+r 1(X)| £| f (X) I—k+2l (X)| |?J<;I2I| |2(<:22II | = I +| i3'

First we estimate i, +i,. By using (2.2), (2.4) and (2.1), we obtain

1
A<+2I:§([XO’Xl’L’Xk+2I—2’Xk+2I; f1- %0, %y Xeror a5 f])
14 tq

2 OOL O([XO Xl’ ’in go - gl]dtr Ldtl’

0

and similar arguments provide

1t ta

1.., o
A<+2|-1:E ooL- dXO’ %, Ly X5 gp + gy ldt, Ldt,

0

where  g(x):= f")§1+x)tr - 251(_ D't +, +(1- t)(- D) 9 i=01. Since, for

e j=2 (7]
bothi =0,1,

6% xia]|= zkll((, 2,kgi(x0)‘ 25:(, w,(g;)
—zlz;wkgé‘;tr,f‘”[ 11] O k:( w, ()
Then
viy =l Ay
£ szrkkl A Lt(swk (£ )at, L, —%;mwk (£©).
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Let us now estimate i,. By using (2.2), (2.3), (2.4) and (2.1), we obtain

f(X)' Lk+2| (X) :(XZ - 1)I P(X)[XO’XI’L’Xk+2I’X; f]

~ (x2 - 1)I P (X)
e
= 20X % Xzt 2% ][0 Xm0 X3 %110 )

([XO’Xl""’Xk+2I-4’Xk+2I-2’Xk+2I!X; f]

(-0 Peo Ly
= - Ol Xor Xs- X3 G~ 205+, Jat Lt
00

0

where
g (u)=f " (Utr -2t -ttt L) +(1- X)ts +a )
i =2,3,4, where a, =1- (1- x)t,, a; =1- 2t +(1+x)t, and a, = (1+ X)t, - 1. Therefore,

as in the estimation of i, +i,, we obtain

K (1- XZ)I|P (x)|

2Klr! Wk(fm)’

which completes the proof for the case r isodd, but the same conclusion can be drawn

Iy :| f(¥)- Lz (X)| £

for the case r iseven, in this manner, Theorem 1 is proved.
The following lemma will be needed in the proof Theorem 2. Set h=2/k, and
recall, the logarithm with base a > 0(* 1), is defined by log, x:=logx/loga,x>0.

Lemma2. Let k3 2. For I+1<log,(k- 1), theequality

max
[~ 1,1]

(X2 i 1)I P (X)‘ = e

]

(x2 - 1)I P (x)‘
holds.
Proof. For-1+h£ y£-h/2, consider the function

= Y PN _@ryen® h(2y+2h>§.
‘ (y'-1) Py \ - ) (1-v?) 5

Since H(-h/2)=1, H§ h/2)>0 and H¢ has only one zero in [-1+h,-h/2]

forl £ (k- 2)(k+1)/(2k), it issufficient to show that H(- 1+h) £1. Indeed,

2 BKk-2)3d
< ¢
k-1& k-1 g L

H(-1+h)=
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for 1+1<log,(k-1). The proof is complete, since log,(k- 1)- 1< (k- 2)(k+1)/(2k),
forallks3 2.

Proof of Theorem 2. In order to prove Theorem 2 it is enough to check the inequality

KK 2’ 36 1aek(|+1)o
ST g x)' [P (0] + T e T (3.1)
xI [-11]. First, we provethe estimate
‘(x 1 P(X)‘Emax f1ee 41+ 0 iae 4(1+1) 9 Jrj (32)
K2k : 28k (s, +1/K) 5 & Eek(s,-2+1/K) 5 36

forall xI [-1,1] and 1+1<log,(k- 1). Let C,, denotetheright hand of (3.2).

If -1<x<-1+h and u=k(x+1)/2 then O<u<1and

‘(x2 - 1)I P (x)‘ 214 s o a
- I+1ai ﬁ_
k< 2k! k' ng k- 158 kg
" K+l
£ 2 n® (s +1/k) o

K9 & k+l
22|+1u|+1-(

s +l/K)u A+
e l1ae 4(1+1) 0
K 28ek (s, +H/K)

£

On the other hand, applying similar arguments to the case -1+h<x<-1+2h, and
using Lemma 2, we obtain (3.2).
Now, taking into account (3.2) and the inequality k!3 k*e*/2pk which follows

from Stirling's formula, we get

ak o 3K’
rIWk,r)Ec—=C ,+————.
( ) 8 k.1 4k+r\/2p—k
It is easy to check that
ak o 3K’ ¢ (1 +1) o

iy +
&2 ' 4Pk &S, g

forl+1<log,(k- 1) . Thus, Theorem 2 is proved.
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