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Abstract: In this article, homotopy perturbation method is implemented to give approximate and

analytical solutions of nonlinear ordinary differential equation systems such as viral dynamical model.

The proposed scheme is based on homotopy perturbation method (HPM), Laplace transform and Padé

approximants. Some plots are presented to show the reliability and simplicity of the methods.
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Viral Dinamik Model Çözümü için Homotopy Pertürbation Yöntemi

Özet: Bu makalede viral dinamik model gibi lineer olmayan adi diferensiyel denklem sisteminin yakla k

analitik çözümünü bulmak için homotopy perturbation yöntemi uyguland . Homotopy perturbation

yöntemi temel al narak, Laplace dönü ümü ve Padé yakla mlar  uyguland . Yöntemleri do rulu unu ve

basitli ini göstermek için baz  grafikler sunuldu.
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1. Introduction

On the behavior of solution of viral dynamic model is examined at the study [2].

The components of the basic three-component model are uninfected CD4+ T-cells,

infected cells and free virus particles are denoted respectively by ( ), ( )x t y t  and ( )v t .

These quantities satisfy

- -

-

-

dx s x xv
dt
dy xv y
dt
dv cy v
dt

(1.1)

with initial conditions:

1 2 3(0) , (0) , (0) .x M y M v M

The motivation of this paper is to extend the application of the analytic

homotopy-perturbation method (HPM) and variational iteration method [12–15] to

solve the a three-species food chain model (1.1). The homotopy perturbation method

(HPM) was first proposed by Chinese mathematician He [8-9,12-15]. The first

connection between series solution methods such as an Adomian decomposition method

and Padé approximants was established in. The transmission and dynamics of HTLV-I

feature several biological characteristics that are of interest to epidemiologists,

mathematicians, and biologists, see, for example, [10-11,16], etc. Like HIV, HTLV-I

targets CD4+ T-cells, the most abundant white cells in the immune system, decreasing

the body’s ability to fight infection.

2 Padé approximaton

A rational approximation to ( )f x  on ,a b  is the quotient of two polynomials

( )  and  ( )N MP x Q x  of degrees N and M, respectively. We use the notation , ( )N MR x  to

denote this quotient. The , ( )N MR x  Padé approximations to a function ( )f x  are given by

[1]
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,
( )

( )   for  a x b.
( )

N
N M

M

P xR x
Q x

(2.1)

The method of Padé requires that ( )f x  and its derivative be continuous at

0x . The polynomials used in (2.1) are
2

0 1 2( ) ... N
N NP x p p x p x p x (2.2)

2
1 2( ) 1 ... M

M MQ x q x q x q x (2.3)

The polynomials in (2.2) and (2.3) are constructed so that ( )f x  and , ( )N MR x

agree at 0x  and their derivatives up to N M  agree at 0x . In the case 0 ( ) 1Q x ,

the approximation is just the Maclaurin expansion for ( )f x .  For  a  fixed  value  of

N M  the  error  is  smallest  when ( )  and  ( )N MP x Q x  have  the  same  degree  or  when

( )NP x  has degree one higher then ( )MQ x .

Notice that the constant coefficient of MQ  is 0 1q . This is permissible, because

it notice be 0 and , ( )N MR x  is not changed when both ( )  and  ( )N MP x Q x  are divided by

the same constant. Hence the rational function , ( )N MR x  has 1N M  unknown

coefficients. Assume that ( )f x  is analytic and has the Maclaurin expansion
2

0 1 2( ) ... ...,k
kf x a a x a x a x (2.4)

and from the difference ( ) ( ) ( ) ( ) :M Nf x Q x P x Z x

0 0 0 1
,

M N
i i i i

i i i i
i i i i N M

a x q x p x c x (2.5)

The lower index 1j N M  in  the  summation  on  the  right  side  of  (2.5)  is

chosen because the first N M  derivatives of ( )f x  and , ( )N MR x  are to agree at 0x .

When the left side of (2.5) is multiplied out and the coefficients of the powers of
ix  are set equal to zero for 0,1, 2,...,k N M , the result is a system of 1N M

linear equations:
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0 0

1 0 1 1

2 0 1 1 2 2

3 0 2 1 1 2 3 3

1 1

0
0

0
0

0
and

M N M M N M N N

a p
q a a p
q a q a a p
q a q a q a a p
q a q a a p

(2.6)

1 1 2 1 2

2 1 3 1 1 2

...    + 0
...    + 0

.                                 .

.

M N M M N M N N

M N M M N M N N

q a q a q a a
q a q a q a a

1 1 1 1

                        .
.                                .

...    + 0M N M N N M N Mq a q a q a a

(2.7)

Notice that in each equation the sum of the subscripts on the factors of each product is

the same, and this sum increases consecutively from 0 to N M . The M  equations in

(2.7) involve only the unknowns 1 2 3, , ,..., Mq q q q  and must be solved first. Then the

equations in (2.6) are used successively to find 1 2 3, , ,..., Np p p p [1].

3.Homotopy perturbation method

To illustrate the homotopy perturbation method (HPM) for solving non-linear

differential equations, He [8, 9] considered the following non-linear differential

equation:

( ) ( ),A u f r r (3.1)

subject to the boundary condition

, 0,uB u r
n

(3.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known

analytic function,  is the boundary of the domain  and
n

 denotes differentiation

along the normal vector drawn outwards from . The operator A can generally be

divided into two parts M and N. Therefore, (3.1) can be rewritten as follows:

( ) ( ) ( ),M u N u f r r (3.3)

He [8, 9] constructed a homotopy ( , ) : 0, 1v r p x  which satisfies
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0( , ) (1 ) ( ) ( ) ( ) ( ) 0,H v p p M v M u p A v f r (3.4)

which is equivalent to

0 0( , ) ( ) ( ) ( ) ( ) ( ) 0,H v p M v M u pM v p N v f r (3.5)

where 0, 1p  is an embedding parameter, and 0u  is an initial approximation of (3.5).

Obviously, we have

0( ,0) ( ) ( ) 0, ( ,1) ( ) ( ) 0.H v M v M u H v A v f r (3.6).

The  changing  process  of  p  from  zero  to  unity  is  just  that  of  H(v,p)  from

0( ) ( ) to  ( ) ( )M v M v A v f r . In topology, this is called deformation and

0( ) ( ) and  ( ) ( )M v M v A v f r  are called homotopic. According to the homotopy

perturbation method, the parameter p is used as a small parameter, and the solution of

Eq. (3.4) can be expressed as a series in p in the form
2 3

0 1 2 3 ...v v pv p v p v (3.7)

When 1p , Eq. (3.4) corresponds to the original one, Eqs. (3.3) and (3.7) become the

approximate solution of Eq. (3.3), i.e.,

0 1 2 31
lim ...
p

u v v v v v (3.8)

The convergence of the series in Eq. (3.8) is discussed by He in [8, 9].

4. Applications

In this section, we will apply the homotopy perturbation method to nonlinear

ordinary differential equation systems (1.1).

4.1 Homotopy perturbation method to viral dynamic model

According to homotopy perturbation method, we derive a correct functional as

follows:

1 0 1 1 1 3

2 0 2 1 3 2

3 0 3 2 3

1 0,

1 0,

1 0,

p v x p v s v v v

p v y p v v v v

p v v p v cv v

(4.1)

where “dot” denotes differentation with respect to t , and the initial approximations are

as follows:
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1,0 0 1

2,0 0 2

3,0 0 3

( ) ( ) (0) ,
( ) ( ) (0) ,
( ) ( ) (0) .

v t x t x M
v t y t y M
v t v t v M

(4.2)

and
2 3

1 1,0 1,1 1,2 1,3

2 3
2 2,0 2,1 2,2 2,3

2 3
3 3,0 3,1 3,2 3,3

...,

...,

...,

v v pv p v p v

v v pv p v p v

v v pv p v p v

(4.3)

Where , , , 1, 2,3,...i jv i j are functions yet to be determined. Substituting Eqs.(4.2) and

(4.3) into Eq. (4.1) and arranging the coefficients of “p” powers, we have
2

1,1 1 1 3 1,2 1,1 3,1 1 1,1 3

3
1,3 1,2 3,2 1 1,2 3 1,1 3,1

2
2,1 1 3 2,2 3,1 1 1,1 3 2,1

3
2,3 3,2 1 1,2 3 1,1 3,1 2,2

3,1 2 3

( ) ... 0,

     ( ) ... 0,

v s M M M p v v v M v M p

v v v M v M v v p

v M M p v v M v M v p

v v M v M v v v p

v cM M 2
3,2 2,1 3,1

3
3,3 2,2 3,2      ... 0,

p v cv v p

v cv v p

(4.4)

In order to obtain the unknowns , ( ), , 1, 2,3,i jv t i j  we must construct and solve the

following system which includes nine equations with nine unknowns, considering the

initial conditions

, (0) 0, , 1,2,3,i jv i j

1,1 1 1 3

1,2 1,1 3,1 1 1,1 3

1,3 1,2 3,2 1 1,2 3 1,1 3,1

2,1 1 3 2

2,2 3,1 1 1,1 3 2,1

2,3 3,2 1 1,2 3 1,1 3,1 2,2

3,1 2 3

3,2

0,

0,

( ) 0,
0,

0,

( ) 0,
0,

v s M M M

v v v M v M

v v v M v M v v
v M M M

v v M v M v

v v M v M v v v
v cM M
v cv2,1 3,1

3,3 2,2 3,2

0,
0.

v
v cv v

(4.5)

From Eq. (3.8), if the three terms approximations are sufficient, we will obtain:
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3

1 1,1
0

3

2 2,1 0

3

3 3,1
0

( ) lim ( ) ( ),

( ) lim ( ) ( ),

( ) lim ( ) ( ),

kp k

kp k

kp k

x t v t v t

y t v t v t

v t v t v t

(4.6)

therefore

1 1 1 3

2
1 1 3 1 2 3 3 1 1 3

2
1 1 3 1 2 3 3 1 1 3

1 1 3 2 1 2 3 3 1 1 3

2
1 3 2 3 3 1 1 3

( )
1
2

1        +
6

2

x t M s M M M t

s M M M M cM M M s M M M t

s M M M M cM M M s M M M

cM M M M M cM M M s M M M

M M cM M M s M M M

s

3

1 1 3 2 3

2 1 3 2

2
1 2 3 3 1 1 3 1 3 2

1 1 3 2 1 2 3 3 1 1 3

2 2 2
1 3 2 3 3 1 1 3 1 2

( )
1
2

1
6

t

M M M cM M

y t M M M M t

M cM M M s M M M M M M t

cM M M M M cM M M s M M M

M M cM M M s M M M M cM M3 3

1 1 3 2 3 3 1 1 3

2
1 3 2

3 2 3

2
1 3 2 2 3

1 2 3 3 1 1 3 1 3 2

2
1 3 2 2 3

2

( )
1
2

1
6

t
s M M M cM M M s M M M

M M M

v t M cM M t

c M M M cM M t

cM cM M c M s M M M c M M M
t

c M M M cM M
3,

  (4.7)

Table 1

Variables and parameters for contagion

s  the (assumed constant) rate of production of CD4+ T-cells 0.272

 their per capita death rate 0.00136

xy the rate of infection of CD4+ T-cells by virus 0.00027

the per capita rate of disappearance of infected cells 0.33

c the rate of production of virions by infected cells 50

the death rate of virus particles 2
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This was done with the standard parameter values given above and initial values

1 2 3100, 0 and 1M M M  for the three-component model.

A few first approximations for ( ), ( )  and ( )x t y t v t  are calculated and presented below:

Three terms approximations:
2 3

2 3

2 3

( ) 100 - 0.109 0.026911165 - 0.02407000173
( ) 0.027 - 0.031440285 0.02751623336 ,
( ) 1 -2 2.675 - 2.307338083 ,

x t t t t
y t t t t
v t t t t

(4.8)

Four terms approximations:

2 3 4

2 3 4

2 3 4

( ) 100 - 0.109 0.026911165 - 0.02407000173 .01556829228
( ) 0.027 - 0.031440285 0.02751623336 -0.01783019773 ,
( ) 1 -2 2.675 - 2.307338083 1.497621958 ,

x t t t t t
y t t t t t
v t t t t t

(4.9)

Five terms approximations:
2 3 4

5

2 3 4

5

2

( ) 100 - 0.109 0.026911165 - 0.02407000173 .01556829228
        -0.008085139722 ,

( ) 0.027 - 0.031440285 0.02751623336 -0.01783019773
       0.009257698196 ,
( ) 1 -2 2.675 - 2.307338083

x t t t t t
t

y t t t t t
t

v t t t t3 4 51.497621958 -0.7773507604 ,t t

(4.10)

Six terms approximations:
2 3 4

5 6

2 3 4

5 6

( ) 100 - 0.109 0.026911165 - 0.02407000173 .01556829228
        -0.008085139722 .003500021813 ,

( ) 0.027 - 0.031440285 0.02751623336 -0.01783019773
       0.009257698196 -0.004007362583

x t t t t t
t t

y t t t t t
t t

2 3 4 5

6

,
( ) 1 -2 2.675 - 2.307338083 1.497621958 -0.7773507604

       0.3362644052 ,
v t t t t t t

t

(4.11)

In this section, we apply Laplace transformation to (4.11), which yields

2 3 4 5

6 7

100 .109 .05382233 .1444200104 .3736390147( )
s s s s s

.9702167666 2.520015705              -
s s

L x s
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2 3 4

5 6 7

.027 .06288057 .1650974002( )
s s s

.4279247455 1.110923784 2.88530106             -
s s s

L y s
(4.12)

2 3 4

5 6 7

1 2 5.35 13.8440285( )
s s s

35.94292699 93.28209125 242.1103717              +
s s s

L v s
s

For simplicity, let 1;s
t

 then

2 3 4 5

6 7

( ( )) 100 -.109 +.05382233 -.1444200104 +.3736390147
            -.9702167666 +2.520015705
L x t t t t t t

t t

2 3 4 5

6 7

( ( )) 0.027 -.06288057 +.1650974002 -.4279247455
           +1.110923784 -2.88530106
L y t t t t t

t t
  (4.13)

2 3 4 5

6 7

( ( )) 2 +5.35 -13.8440285 +35.94292699
            -93.28209125 +242.1103717
L v t t t t t t

t t

Padé approximant 4 / 4 of (4.13) and substituting 1t
s

, we obtain 4 / 4  in terms of s.

By using the inverse Laplace transformation, we obtain

-2.595814579 -.0008093617298

.2559676681 4102.105793

( ) .008231687905 100.0178711
        -.02610282415 +.0003377192999

t t

t t

x t e e
e e

-2.595127407 .2662158241

-9 18.37622499

( ) -.009436126942 +.009436126831
        +.1127264179*10

t t

t

y t e e
e

 (4.14)

-2.593466302 -2.46958404

.266304151 37173.86307

( ) .8066611297 -.01482572078
        +.2081645911 -.0001952110838

t t

t t

v t e e
e e

These results obtained by Padé approximations for ( ), ( )  and ( )x t y t v t are calculated and

presented follow.
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0 0.005 0.01
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1
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x 10
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t time

infected cells
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0 0.005 0.01
-6

-4

-2

0

2
x 10157

t time

free virus particles

v

Figure. 1. Plots of Padé approximations for viral dynamical model

These results obtained by homotopy perturbation method, three, four, five and

six terms approximations for ( ), ( )  and ( )x t y t v t are calculated and presented follow.
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v
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Figure. 2. Plots of three, four, five and six terms approximations for viral dynamic model

5. Conclusions

In this paper, homotopy perturbation method was used for finding the solutions

of nonlinear ordinary differential equation systems such as viral dynamical model. We

demonstrated the accuracy and efficiency of these methods by solving some ordinary

differential equation systems. We use Laplace transformation and Padé approximant to

obtain  an  analytic  solution  and  to  improve  the  accuracy  of  homotopy  perturbation

method. We apply He’s homotopy perturbation method to calculate certain integrals. It

is easy and very beneficial tool for calculating certain difficult integrals or in deriving

new integration formula.

The computations associated with the examples in this paper were performed

using Maple 7 and Matlab 7
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