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Abstract: In this study, the solvability conditions of an inverse problem for the stationary kinetic

equation is investigated.  Also, a symbolic algorithm based on the Galerkin method is developed for

computing the approximate solution of  the problem.
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Kinetik Denklem için bir Ters Problemin Çözülebilirli i Üzerine

Özet: Bu çal mada, dura an kinetik denklem için bir ters problemin çözülebilirlik artlar  ara lm r.

Ayr ca, bu problemin yakla k çözümünü hesaplamak için Galerkin metoduna dayanan bir sembolik

algoritma geli tirilmi tir.

Anahtar Kelimeler : Kinetik denklem, ters problem, sembolik hesaplama

1. Introduction

Kinetic equations (KE) are widely used for qualitative and quantitative

description of physical, chemical, biological, and other kinds of processes on a

microscopic scale. They are often referred to as master equations since they play an
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important role in the theory of substance motion under the action of forces, in particular,

irreversible processes, [1,2].

An inverse problem for KE is a problem of simultaneous determining the

distribution function of a quantity and some functions entering the equations for given

additional information. As a rule, the additional information is the trace of the

distribution function on some manifolds of variables. Inverse problems for KE are

important both from theoretical and practical points of view. The physical interpretation

of these problems consists in finding particle interaction forces, scattering indicatrices,

radiation sources and other physical parameters. Interesting results in this field are

presented in [3-10].

In this paper, the existence, uniqueness and stability of the solution of an inverse

problem for the stationary kinetic equation is proven in the case where the values of the

solution are known on the boundary of a domain. A symbolic computation approach

based  on  the  Galerkin  method  is  developed  to  obtain  the  approximate  solution  of  the

problem. A comparison between the computed approximate solution and the exact

solution of the problem is presented.

We consider the kinetic equation

1

( , ) ( , )n

i i
i i i

u x v u x vv f x
x v

, (1)

in the domain , : , , 1n nx v x D v G n  where D , 3G C ,

1 2 , 1 D G , 2 D G  and 1 , 2  are the closures of 1 , 2

respectively.

Equation 1 is extensively used in plasma physics and astrophysics, [1,2]. In

applications, u represents the number (or the mass) of particles in the unit volume

element of the phase space in the neighbourhood of the point ( , )x v , and

1 2, ,..., nf f f f is the force acting on a particle.

2. Formulation of the Problem

Problem 1. Determine the functions ( , )u x v and x defined in from equation (1),

provided that the function f is given and the trace of u is known on the boundary.
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The main difficulty in studying the solvability of problem 1 is overdeterminacy.

In the theory of inverse problems, usually "overdeterminacy" means that the number of

free variables in the data exceeds the number of free variables in the unknown

coefficient or right hand side of the equation ( x ), and this is not the case for

1n here, whereas for dimension 2n  Problem 1 is  overdetermined in the last sense.

It is important to note here that inverse problems for KE and integral geometry

problems are closely interrelated. And the underlying operator of the related IGP is

compact and its inverse operator is unbounded. Therefore, it is impossible to prove

general  existence  results.  This  is  the  true  reason  for  why  we  use  the  term

"overdeterminacy" in this sense here.

In  the  paper,  using  some  extension  of  the  class  of  unknown  functions,  the

overdetermined inverse problem is replaced by a related determined one, which is a new

and interesting technique of investigating the solvability of overdetermined problems.

This method was firstly proposed by Amirov (1986) for the transport equation.

Problem 2. Find a pair of  functions ,u defined in that satisfies the relations:

,Lu x v , (2)

0u u , (3)

0L ,
2

1

n

i i i

L
x v

, (4)

provided that the function f is given.

Here equation (4) is satisfied in generalized functions sense, i.e.,
*

, 0L

for any 0C .

3. Solvability of the Problem

To formulate the solvability theorem for Problem 2, we need the following

notation:

A  denotes the set of functions ,u x v with the following properties

i) For u A , 2Au L in the generalized sense, where Au LLu ;
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ii) There exists a sequence
3 3
0 : , 0ku C C  such that ku u  in

2L  and , ,k kAu u Au u  as k .

The condition 2Au L  in the generalized sense means that there exists a

function 2L  such  that  for  all 0C , *, ,u A  and Au ,

where *A is the differential operator conjugate to A in the sense of Lagrange.

The standard spaces mC , 2L  and kH  are described in detail, for example,

in [11,12].

Theorem 1. Suppose that 1f C and the inequality

2
1

, 1

n
i ji

i j j

f
x (5)

holds for all n , where 1 is a positive number. Then Problem 2 has at most one

solution ,u such that u A  and 2 ( )L .

Proof. Let ,u  be  a  solution  to  Problem  2  such  that 0u  on and u A .

Equation 1 and condition (4) imply 0Au . Since u A , there exists a sequence

3
0ku C  such that ku u in 2L  and , 0k kAu u  as k . Observing that

0ku  on , we get

1
, ,

xi

n

k k k k
i i

Au u Lu u
v

. (6)

The right-hand side of (6) can be estimated as follows:
2

1 1 , 1 , 1

2
n n n n

k k i k k k k
k i

i i i j i ji i i j i j j i j

u u f u u u uLu v
x v x x v v v x x

, 1 , 1

n n
k k k k

i i
i j i ji j j j i j

u u u uv v
x v x x x v , 1

n
k k

i
i j j i j

u uf
x v v

2

1 , 1 , 1

n n n
k k k k k

i i i
i i j i ji i j i j i j j

u u u u uv f f
v x v v x v v x

. (7)

Taking into account the geometry of  and the condition 0ku  on , from (7)
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,k k kAu u J u (8)

is obtained, where
2

1 1

1
2

n n
k i k k

k
i ji j i j

u f u uJ u d
x x v v . (9)

Since  is bounded and 0ku , from (9) and Steklov inequality it follows that

221
2k x k kJ u u d c u d , (10)

where 0c ,
1 2
, ,...,

x x xnx k k k ku u u u .  Using  definition  of (A), we have

2 0u d and 0u  in . Then (2) implies , 0x v . Hence uniqueness of the

solution of the problem is proven.

Since 3 3 3
0 , ,u C D C G C  then from Theorem 2, Sec. 4.2., Chapter

III in [12], Problem 2 can be reduced to the following problem.

Problem 3. Determine the pair ,u from the equation

,Lu x v F

provided that 2F H is given, the trace of the solution u on the boundary  is

zero and satisfies equation (4).

Theorem 2. Under the assumptions of Theorem 1, suppose that 2 ( )F H . Then there

exists a solution ,u of Problem 3 such that 1u A H , 2L .

Proof. We consider the following auxiliary problem

Au , (11)

0u , (12)

where LF . We select a set
3
01 2, ,...w w C , which is a complete and orthonormal

set in 2L . We may assume here that the linear span of this set is everywhere dense

in 1,2H . 1,2H  is  the  set  of  all  real-valued  functions 2,u x v L  that have

generalized derivatives , , , , , 1,...
i i i j i jx v x v v vu u u u i j n , belong to 2L  and whose trace

on  is zero.
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For problem (11)-(12), an approximate solution

1
i

N

N N i
i

u w ,
1 2

( , ,..., )
N

n
N N N N , (13)

is defined as a solution to the following problem:

Find the vector N from the system of linear algebraic equations

, 0, 1, 2,...,N iAu w i N . (14)

We shall prove that under the hypotheses of Theorem 2, system (14) has a unique

solution N for any function 2F H . For this purpose, i th  equation  of  the

homogeneous  system  ( 0 ) is multiplied by 2
iN and  sum  from  1  to N  with

respect to i . Hence 2 , 0N NAu u  is obtained. From (5) and (8), we obtain 0Nu ,

where
1 1
,..., , ,...,

x x v vn nN N N N Nu u u u u .

So, 0Nu  in  as a result of the conditions 0Nu  on ,
3
0Nu C . Since the

system iw  is linearly independent, we get 0
iN , 1, 2,...,i N . Thus the

homogeneous version of system (14) has only a trivial solution and therefore the

original inhomogeneous system (14) has a unique solution
iN N , 1, 2,...,i N for

any function 2F H .

Now we estimate Nu ,  in  terms  of F .  We multiply  the i th equation of the system by

2
iN and sum from 1 to N with respect to i . Since LF , we obtain

2 , 2 ,N N NAu u LF u . (15)

Observing that 0Nu  on , the right-hand side of (15) can be estimated as follows

1

2 , 2
n

N
N

i i i

uFLF u d
v x

2 21
v x NF d y d , (16)

where 1
1 ,

1
,...,

nv v vF F F . From (8), we have

2 212 N v x NJ u F d y d , (17)

and since  is bounded and 0Nu  on , from (17), we have

1
2

N vH L
u C F , (18)
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where the constant 0C does not depend on N .

Thus, the set of functions Nu , 1, 2,...,N is bounded in 1H . Since 1H

is a Hilbert space, there exists a subsequence in this set that is denoted again by Nu

converging weakly in 1H  to a certain function 1u H . From inequality (18)

and weak convergence of Nu  to 1u H , it follows that

1 1
2

lim vH H LN
u u C F . (19)

From estimate (18), it is easy to prove that there exists a subsequence of Nu  and

, 0NLu F L . (20)

Since the linear span of the functions iw , 1, 2,...,i  is everywhere dense in 1,2H ,

passing to the limit as N in (20), yields to

, 0NLu F L (21)

for any 1,2H . If we set Lu F ,  from  (21)  we  see  that  the  function

satisfies the condition (4) and from (18) the following estimate is valid:

2 2 2
vL L L

C F F (22)

Thus we have found a solution ,u  to  Problem  3,  where 1u H , 2 ( )L .

Now we will show that u A . Since 2 ( )u L  and F 2H , it follows that

2Au L in the generalized sense. Indeed, for any 0 1,2

o
C H , the

following equalities hold:

, , , , , .u A u L L Lu L F L (23)

Now, we have to show that , ,N NAu u Au u  as N . Let’s denote the

orthogonal projector of 2L  onto nM  by nP , where nM  is the linear span of the set

1 2, ,..., nw w w . We have N N NP Au P  from (14) and NP  strongly converges to  in

2 ( )L as N . Then we have , ,N N NP Au u Au u  as N  because Nu
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weakly converges to u and N NP Au  strongly converges to Au  in 2 ( )L  as N .

Since NP is self adjoint in 2 ( )L , we obtain

, , ,N N N N N N N NAu u Au P u P Au u (24)

Consequently, we obtain the convergence , ,N NAu u Au u  as N , which

completes the proof.

4. Solution Algorithm and Some Computational Experiments

An approximate solution to Problem 3 will be sought in the form

, ,..., , , ,..., 1 2 1 21 2 1 2
1 2 1 2

1

, ,..., , , ,...,
, ,..., , , ,..., 0

i i i j j j n nn n
n n

N

N N i i i j j j
i i i j j j

u w x v (25)

for the domains, for example, : 1 nD x x , : 1 nG v v ,

where 1 2 1 2

1 2 1 2, ,..., , , ,..., 1 2 1 2... ...n n

n n

i ji i j j
i i i j j j n nw x x x v v v  and the systems 1 2

1
1 2 ,..., 0

... n

n

ii i
n i i

x x x ,

1 2

1
1 2 ,..., 0

... n

n

jj j
n j j

v v v  are complete in 2 ( )L D  and 2 ( )L G , respectively. The functions x

and v  are defined as follows

2 ,1
,0

x
x

1
1

x
x

 ,
2 ,1
,0

v
v

1
1

v
v

,

In expression (25), unknown coefficients
, ,..., , , ,...,1 2 1 2

,
i i i j j jn n

N 1 2 1 2, , ..., , , , ..., 0, ..., 1n ni i i j j j N  are

determined from the following system of linear algebraic equations (SLAE):

, ,..., , , ,..., 1 2 1 2 1 2 1 21 2 1 2
1 2 1 2 2

1

, ,..., , , ,..., , ,..., , , ,...,
, ,..., , , ,..., 0

,
i i i j j j n n n nn n

n n

N

N i i i j j j i i i j j j
i i i j j j L

A w w

=
1 2 1 2 2, ,..., , , ,..., ( )( , )

n ni i i j j j LF w (26)

Algorithm 1.

Input: , ( , ), ,N F x v f x v

Output: , , ( , )Nu x v x v

{The following procedure computes left side of each equation in (26)}

Procedure LeftSLAE 1 2 1 2, ,..., , , ,...,n ni i i j j j

Left :=0
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For 1 0,..., 1i N  do, for 2 0,..., 1i N  do ,..., for 0,..., 1ni N  do

For 1 0,..., 1j N  do, for 2 0,..., 1j N  do ,..., for 0,..., 1nj N  do

begin

:Left Left
, ,..., , , ,..., 1 2 1 2 1 2 1 21 2 1 2

2
, ,..., , , ,..., , ,..., , , ,...,,

i i i j j j n n n nn nN i i i j j j i i i j j j
L

A w x v w x v

end;

{The following procedure constructs system (26)}

Procedure SLAE

:Set , LF

For 1 0,..., 1i N  do, for 2 0,..., 1i N  do,…, for 0,..., 1ni N  do

For 1 0,..., 1j N  do, for 2 0,..., 1j N  do,…, for 0,..., 1nj N  do

Begin

1 2 1 2
2

1 2 1 2 , ,..., , , ,...,, ,..., , , ,..., ,
n nn n i i i j j j L

Set Set LeftSLAE i i i j j j w x v

end; {Principle part}

Solve
, ,..., , , ,...,1 2 1 2

,
i i i j j jn nNSLAE

For 1 0,..., 1i N  do, for 2 0,..., 1i N  do,..., for 0,..., 1ni N  do

For 1 0,..., 1j N  do, for 2 0,..., 1j N  do,..., for 0,..., 1nj N  do

Begin
, ,..., , , ,..., 1 2 1 21 2 1 2 , ,..., , , ,...,i i i j j j n nn nN N N i i i j j ju u w x v  end

, ,Nx v L u F x v

end of the algorithm.

The algorithm has been implemented in the computer algebra system Maple and tested

for several inverse problems. Two examples are presented below. In the examples, NU

shows the computed solution at N , and N is the approximation level in (26).

Example 1. Let us consider Problem 3 on the domain , 1,1 , 2,3x v x v ,

with the given functions 4 2 3 2, (10 3 ) ( 15 15 3 10)F x v v x v v v v x v ,

,f x v x . Then, at 2N  the algorithm gives the result:
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3 2 3
2 6 5U x x v v v , 2 3 4 2 4

2 6 -5 6 6v v v x x  and this is also the exact

solution of the problem.

Example 2. Consider Problem 3 on , 1,1 , 1,1x v x v , then according

to the given functions 3 2 2
1( , ) 3 ( 2) 6 2 ( 2)vF x v v v x v v x xe v  and

, 0f x v , computed approximate solution and exact solution ,u x v  of the problem

at 2N  and 4N  is presented on Figure 1:(a),(b), respectively. Here, the exact

solution of the problem is

2 2 23( , ) 1 1
2

vu x v x v xv e
v

,
3 26 2

( , )
2

v v x v v
x v

v
.

Figure 1. A comparison of the approximate (dotted, yellow graph) and exact solution

(solid, blue graph) u  of the problem (a) 2N , (b) 4N .
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Figure 2. 1-d cross-section comparison of approximate and exact solution (cross) u  at

0.7x  for different approximation levels.

In example 1, computed approximate solution at 2N  coincides with the exact

solution of the problem and in example 2, as it can be seen from Figure 1-(b) and Figure

2 computed solution at 4N  is  very  closed  to  the  exact  solution.  Consequently,  the

computational experiments show that the proposed algorithm gives efficient and reliable

results.
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