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ABSTRACT  

In the present paper, to investigate the phonon frequencies of face-centered-cubic (f.c.c.) Fe-18%Cr-10%Mn-16%Ni and 
Fe-18%Cr-12%Ni-2%Mo alloys it has been used an empirical many-body potential (MBP) developed by Akgün and Uğur, 
recently. The parameters defining the MBP f.c.c. alloys may be computed by following a procedure described. The radial, 
tangential and three-body force constants of the alloys have been calculated. Finally, the phonon frequencies of the alloys 
along the principal symmetry directions have been computed using the calculated two-and three-body force constants. The 
theoretical results are compared with the experimental phonon dispersions. The agreement shows that the proposed MBP 
provides a reasonable description of the f.c.c. alloys. 
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Fe-18%Cr-10%Mn-16%Ni ve Fe-18%Cr-12%Ni-2%Mo ALAŞIMLARININ 
FONON DİSPERSİYONU 

 

ÖZET***  
Bu çalışmada, Akgün ve Uğur tarafından tanımlanan çok-cisim etkileşmeli potansiyeli (MBP) kullanılarak fcc Fe-%18Cr-
%10Mn-%16Ni, Fe-%18Cr-%12Ni-%2Mo alaşımlarının fonon frekansları incelendi. İncelenen alaşımların MBP 'yi 
tanımlayan parametreleri tanımlanan metoda göre hesaplandı. Alaşımların  açısal, radyal ve üç-cisim kuvvet sabitleri 
hesaplandı. Sonuç olarak alaşımların fonon frekansları temel simetri doğrultuları boyunca, hesaplanan iki ve üç-cisim 
kuvvet sabitleri kullanılarak bulundu. Fonon dispersiyonlarında teorik sonuçlar deneysel sonuçlarla karşılaştırıldı. f.c.c. 
alaşımlarda, potansiyelin etkili olduğu görüldü. 

Anahtar Kelimeler: çok-cisim etkileşme potansiyeli, fonon frekansları , açısal kuvvet sabiti, radyal kuvvet sabiti. 

 

I.  INTRODUCTION 

Austenitic stainless steels find extensive applications due 
to their high corrosion resistance and their good 
mechanical properties. These alloys are based on the Fe-
Cr-Ni system. However, only a few investigations of 
phonon dispersion in austenitic steels have been 
published at present. Recently the phonon dispersion 
relations for Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-
12%Ni-2%Mo alloys have been measured using inelastic 
neutron scattering at room temperature [1,2]. The aim of 
the present work is to investigate the suitability of 
applying both parametrization procedure and MBP 

described by Akgün and Uğur [3-5], to the problem of 
studying lattice dynamics of the Fe-18%Cr-10%Mn-16%Ni 
and Fe-18%Cr-12%Ni-2%Mo alloys. 

II. THEORY AND COMPUTATION 

The total interaction energy of a system of N atoms, in 
general, may be expressed as a many-body expansion,  
 ... .. .2 3 nφ=φ +φ + +φ +  (1) 
Where φ2, φ3  and φn represent the total two-body, three-
body, and n-body interaction energies, respectively. In this 
paper we have re-expressed the total interaction energy of a 
system simply by separating  C as  
 C2 3φ=φ + φ  (2) 
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where C is a three-body potential parameter to be 
determined. The new MBP developed by Akgün and 
Uğur [3,4]  contains both two-and three-body potentials. 

II.1. Two-body Model Potential 

For the interatomic interactions between two atoms of a 
lattice the two-body model potential had been described 
by the modified form of the generalized Morse 
potential[3], and the average total interaction energy per 
atom had  been written as  

n
mo

ij ij ij2 iji j

rD(r ) exp( m r ) m exp( r )r2(m 1) ≠

⎛ ⎞ ⎡ ⎤φ = β − α − β −α∑ ⎜ ⎟ ⎣ ⎦− ⎝ ⎠

                                                                                    (3) 
Where m and α control the width and the depth of the 
potential, respectively.  D is the dissociation energy of 
the pair, ro is the separation of the atoms for minimum 

potential, and β = exp(α ro ). In Eq.3 
nro

rij
⎛ ⎞
⎜ ⎟
⎝ ⎠

 modifies the 

generalized Morse potential [3] to exhibit the correct 
nature of the forces, particularly at short distances. rij   is 
the interatomic distance between atoms i and j, and rij = 
a(mij

2 + nij
2 + lij

2 )1/2, where mij , nij , lij
   are integers 

representing the difference between the coordinates of i-
and j-th atoms of the lattice and a is the lattice constant. 
The summation in the present calculations extends up to 
10-th neighbours. 
II.2. Three-body Model Potential 

In the present paper we have used a three-body potential 
developed by Akgün and Uğur [4,5], recently. The three-
body general potential coupling the atom i-th with its 
neighbours j-and k-th is 

( )n
mo

ij ik ij ikij ik3 j k i

rCD(r r ) exp( m (r r ))r r2(m 1) ≠
φ = β − α +∑ ∑ +−

⎡⎣

 ij ikm exp( (r r ))− β −α + ⎤⎦  (4) 

where rij  and  rik  are the respective separations of the atoms 
j-and k-th from the atom i-th. C is the three-body potential 
parameter to be evaluated.  
 
II.3. Calculation of the MBP Parameters 
 
The parameters (α, ro, D, C) defining the MBP, 

2 3Cφ = φ φ+ , for f.c.c Fe-18%Cr-10%Mn-16%Ni and Fe-
18%Cr-12%Ni-2%Mo alloys may be computed by 
following a procedure described by present authors [4,5]. 
For equilibrium semi-lattice constant of the alloy (ao) in this 
method: 

  2 ij ooijr a(r ) =φ = ε   

 
ij ik or r a2 ij 3 ij ikij or a(r ) (r r ) = ==φ + φ = φ  

 
ij or a

2 ij

ij

(r )
0

r =

∂φ
=
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Where ε0 is the ionic part of the total cohesive energy φ, B is 
the total Bulk modulus, and c is a geometrical constant 
depending on the type of the crystal (for f.c.c. crystal c=2). 
For Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-
2%Mo alloys the input data used in Eqs.(5) are given in 
Table I. 

Table I. Input data [6,7] for Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo. a is the lattice constant of the alloys [1,2]. 
Alloy a (10-10 m) -εo  (eV) B (1011 Nm-2) -φ (eV) 

Fe-18%Cr-10%Mn-16%Ni 3.59 1.23528 1.59 4.2344 

Fe-18%Cr-12%Ni-2%Mo 3.59 1.26816 1.57 4.3236 
 

The MBP parameters (α, ro, D, C) can be evaluated for a 
many different values of the exponent m and n. In order 
to determine the best values of the m and n defining the 
MBP for the alloys we have then computed the second-
order elastic constants (c11, c12, c44) for f.c.c. structure at 
the lattice constant of the alloys. The elastic constants can 
be evaluated from the well known expressions for cubic 
crystals [8,9]. 

 
2 22 (r ) (r r )a 2 ij 3 ij ik4 2 2oc m m m11 ij ij ik2 2 2 2V ( r ) r rc j k i ij ij ik

⎧ ⎫⎡ ⎤ ⎡ ⎤∂ φ ∂ φ⎪ ⎪⎢ ⎥ ⎢ ⎥= +∑ ∑⎨ ⎬⎢ ⎥ ⎢ ⎥∂ ∂ ∂⎪ ⎪≠ ⎣ ⎦ ⎣ ⎦⎩ ⎭

, 
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 ( )1c 2c c44 11 123
= −   (6)  

Where Vc is the atomic volume, rij = a(mij
2 + nij

2 + lij
2)1/2, 

and rik=a(mik
2+nik

2+lik
2)1/2. For c44, the relation developed by 

Milstein et al.[10] is used. Comparing the computed values 
with the experimental values of the second-order elastic 
constants we have determined the best values of the 
exponent m and n given in Table II for the alloys. For the 
determined values of m and n the computed parameters (α, 
ro, D, C) of the MBP are given in Table III. For the 
calculations in Eqs.(6) the summations extend up to 10-th 
neighbours of the f.c.c. structure.  

 

 



Table II. Computed elastic constants (in units 1011 N/m2) for Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo at room 
temperature.  

Alloy n m c11 c12 c44 Ref. 
0.89 1.25 2.18 1.25 1.03 Pres.work Fe-18%Cr-10%Mn-16%Ni 

  2.18 1.29 0.79 exp. [1] 
0.82 1.17 2.06 1.21 0.97 Pres.work Fe-18%Cr-12%Ni-2%Mo 

  2.06 1.33 1.19 exp. [2] 

Table III. Computed MBP parameters for Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo at the lattice constant of the alloys. 
Alloy    n    m      D (eV)    α (10-10 m)   ro(10-10 m)        C 

Fe-18%Cr-10%Mn-16%Ni 0.89 1.25 0.1883258 2.9062000 2.594305 0.362582 
Fe-18%Cr-12%Ni-2%Mo 0.82 1.17 0.1945511 2.906750 2.5977290 0.342227 
       

II.4. Phonon Dispersion Relations  

The usual secular determinant to determine the frequency 
of vibration of a solid is given by 
 2D m I 0− ω =  (7) 

where D is a (3×3) dynamical matrix, m is the ionic mass, 
and I is the unit matrix. In the present work the elements of 
the dynamical matrix Dαβ are composed of two-body Di

αβ  

(pair central) and three-body Dm
αβ (many-body) parts: 

 i mD D D= +αβ αβ αβ  (8) 

In the case of the two-body central pairwise, the 
interactions are assumed to be effective up to 10-th nearest 
neighbours and iDαβ  are evaluated by the scheme of 

Shyam et al. [11]. The typical diagonal and off-diagonal 

matrix elements of iDαβ  can be found in Ref. 11. In the 

case of the central interaction, the first and second 
derivatives of the two-body model potential [3] provide 
two independent force constants, i.e. the tangential force 
constant βi and radial force constant αi , for the i-th set of 
neighbours: 
 (r )1 2 ij

i r rij ij

∂φ
β =

∂
 

 
2 (r )2 ij

i 2rij

∂ φ
α =

∂
  I = 1 to 10. (9) 

For Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-
2%Mo, βi and αi have been computed for f.c.c. structure 
the lattice constant of the alloys. For Fe-18%Cr-10%Mn-
16%Ni and Fe-18%Cr-12%Ni-2%Mo alloys the computed 
force constants are given in Table IV.  

Table IV. The computed radial (αi) and tangential (βi ) force constants. 

αi(10-3Nm-1) βi(10-3Nm-1) Serial 
No. Fe-18%Cr-10%Mn-6%Ni Fe-18%Cr-12%Ni-2%Mo Fe-18%Cr-10%Mn-16%Ni Fe-18%Cr-12%Ni-2%Mo 

1   23413.16   22822.37 -219.8243 -243.3205 
2 -1296.963 -1363.229  143.5962  158.2303 
3 -163.3133 -189.3236  12.98447  15.55341 
4 -23.23424 -28.70595  1.550336  1.965995 
5 -3.961706 -5.126328  0.233693  0.308970 
6 -0.785891 -1.053315  0.042111  0.057473 
7 -0.176235 -0.000242  0.008725  0.012208 
8 -0.043698 -0.061545  0.002023  0.002887 
9 -0.011782 -0.016894  0.000514  0.000746 

10 -0.003410 -0.004963  0.000141  0.000208 
     

In order to determine the contribution of the three-body 
forces to the diagonal and off-diagonal matrix elements of 

mDαβ , we follow the scheme of Mıshra et al.[12], where a 
three-body potential is used to deduce the force-constant 
matrix, involving a single parameter: 
 mD 4 [4 2c c (c c )],2i i j k= γ − − +αα  

 mD 4 [c (c c ) 2],i j k= γ + −αβ   (10) 

Where γ is the second derivative of the three-body 
potential φ3(rijrik), ci=cos (πaki) and c2i=cos (2πaki). To 
compute the three-body force constant γ of Fe-18%Cr-

10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo at the 
lattice constant of the alloys, we limit the short-range 
three-body forces in the f.c.c. system only upto first-
nearest neighbours.  

The computed values of the three-body force constants γ 
=892.831×10-3 Nm-1 for Fe-18%Cr-10%Mn-16%Ni, γ 
=5131.871×10-3 Nm-1 for Fe-18%Cr-12%Ni-2%Mo. 

Now one can construct the dynamical matrix Dαβ by using 
Eq.(8) and then solve the secular equation (7) to compute 
the phonon frequencies along the principal symmetry 
directions [100], [110] and [111] for the alloys. 
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III. RESULTS AND DISCUSSIONS 

In the present work, the interaction system of f.c.c. Fe-
18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo 
alloys has been considered to be composed of the two-
body and three-body parts. Therefore, the MBP is used to 
investigate the dynamical behaviors of the these alloys. In 
the mean-crystal model the equilibrium pair energy, Bulk 
modulus, and total cohesive energy have been used as the 
input data. Then we have computed the ab initio radial 
(αi), tangential (βi ) and three-body (γ) force constants for 
Fe-18%Cr-10%Mn-16%Ni and Fe-18%Cr-12%Ni-2%Mo 
alloys, using the MBP. The computed values of the force 
constants have been fed into the dynamical matrix [8] and 
the phonon frequencies for the alloy have been calculated 
by solving the secular determinant [7]. The computed 
dispersion curves are shown by solid curves in Figure 1-2. 

Consequently, the present results show that the proposed 
MBP are sufficient to study the lattice dynamics in the 
f.c.c. quaternary alloys.   

 

 
Figure 1. Phonon dispersion curves at room temperature for Fe-18%Cr-

10%Mn-16%Ni the symbols ○, ,  represent the experimental 
value [1, 13, 14]. The solid curves show the computed dispersion 
curves according to the many-body interactions.  

 
Figure 2. Phonon dispersion curves at room temperature Fe-18%Cr-

12%Ni-2%Mo the symbols ▲,▼,  represent the 
experimental value [2]. The solid curves show the computed 
dispersion curves according to the many-body interactions 
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