ISSN: 2277-8713 *IJPRBS*

REVIEW ARTICLE

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

A Path for Horizing Your Innovative Work

INTERPRETATION OF STRUCTURE IN ORGANIC CHEMISTRY BY MISCELLANEOUS TECHNIQUE

PATEL MAHENDRA A^{*}, Mr. HIREN KADIKER

Arihant School of Pharmacy and Bio research institute, Adalaj, Ghandhinagar, Gujarat, India

Corresponding Author Email: pma.mahi40@gmail.com

Accepted Date: 09/06/2012

Publish Date: 27/06/2012

Abstract: Now a day, many molecules come in to the market. There are many methods for the synthesis of newer molecule and hence there is a chance of the impurities in the synthesis of newer molecule. So it is a challenge to the scientist to find out the impurities present in to the synthesis. For finding out the physical and chemical properties of this impurities and newer synthesized molecule, it has to find out the structure of that particular. We cannot interpret the structure with only one method; we have to use many methods like UV, IR, MASS, HPLC and NMR or any other combination of these methods like LC-NMR, MS-MS, LC-MS. Now a day, one another challenge is to find out the structure of degradants in to the formulation and it can also to find out by above methods.

Keywords: UV, IR, MASS, HPLC, NMR, LC-NMR, MS-MS, LC-MS.

INTRODUCTION

1) HYDROGEN DEFICIENCY INDEX:

Hydrogen deficiency Index indicate the number of unsaturated bond present in to the structure and it can be calculated with the following formula

Hydrogen Deficiency Index =

 $\begin{array}{c} C-\underline{H}-\underline{X}+\underline{N}+1\\ 2 & 2 & 2 \end{array}$

2) IR SPECTROSCOPY¹⁻⁴:

IR Specrtoscopy is the most important tools for the determination of the functional group. Fingerprint region is the most important for the interpretation of the functional group. Every functional group having its own characteristic IR band and hence it can be easily identified. The various functional group bands are given below.

ALKANES

- C-H sp³ C-H absorption always occurs at frequencies 3000 2840 cm⁻¹
- CH_2 Methylene groups have a characteristic bending absorption of approximately 1375 cm⁻¹
- CH₃ Methyl groups have a characteristic bending absorption of

approximately 1375 cm⁻¹

- CH_2 The bending (rocking) motion associated with four or more CH_2 groups in an open chain occurs at about 720 cm⁻¹
- C-C Many weak peaks

ALKENES

- =C-H Stretch for sp^2 C-H occurs at values 3095 3010 cm⁻¹
- =C-H Out-of-plane (omp) bending occurs in the range $1000-650 \text{ cm}^{-1}$
- C=C Stretch occurs at $1660 1600 \text{ cm}^{-1}$

ALKYNES

- \equiv C-H Stretch for sp C-H usually occurs near 3300cm⁻¹
- C=C Stretch occurs near 2150 cm⁻¹

AROMATIC RINGS

- =C-H Stretch for sp_2 C-H occurs at values 3050 3010 cm⁻¹
- =C-H bending occurs at 900-690 cm⁻¹
- C=C Ring stretch absorption often occur in pairs at 1600 cm^{-1} and 1475^{-1}

ALCOHOLS AND PHENOLS

• O-H The free O-H stretch is a sharp peak at $3650 - 3600 \text{ cm}^{-1}$

• C-O-H Bending appears as a broad and weak peak at 1440 – 1220 cm⁻¹

• C-O Stretching vibrations usually occurs in the range of 1260 - 1000 cm⁻¹

ETHERS

• C-O The most prominent band is due to C-O stretch, 1300-1000 cm⁻¹

ALDEHYDES

• R-CH=O C=O stretch appears in range 1740-1725 cm⁻¹ for normal aliphatic Aldehydes

• C=C-CH=O Conjugation of C=O with C=C; 1700-1680 cm⁻¹ for C=O and 1640 cm⁻¹ for C=C

• Ar-CH=O Conjugation of C=O with phenyl; 1700-1660 cm⁻¹ for C=O and 1600-1450 cm⁻¹ for ring

• Ar-C=CH=O Longer conjugated system 1680 cm⁻¹

• C-H Stretch, aldehyde hydrogen (-CHO), consists of a pair of weak bands one at $2860 - 2800 \text{ cm}^{-1}$ and the other at 2760-2700 cm⁻¹

KETONES

• R²-C=O C=O stretch appears in range 1720 – 1708 cm⁻¹ for normal aliphatic Ketones • C=C-C Conjugation of C=O with C=C; 1700-1675 cm⁻¹

ISSN: 2277-8713

IJPRBS

• Ar-C=O-R Conjugation of C=O with phenyl; 1700-1680 cm⁻¹

CARBOXYLIC ACIDS

• O-H Stretch usually very broad, occurs at $3400 - 2400 \text{ cm}^{-1}$

- C=O Stretch, broad, occurs at 1730 1700 cm⁻¹
- C-O Stretch occurs in the range 1320 1210 cm⁻¹

ESTERS

- R-C=OOR C=O stretch appears in range 1750-1735 cm⁻¹
- C=C-C=OOR 1740 1715 cm⁻¹ for C=O and 1640-1625 cm⁻¹ for C=C
- Ar-C=OOR 1740-1715 cm⁻¹ for C=O and 1600-1450 cm⁻¹
- R-C=OO-C=C Conjugation of single bonded oxygen atom with C=C or phenyl $1765 - 1762 \text{ cm}^{-1}$ for C=O
- O-C=O Cyclic esters (lactones); C=O frequency increases with decreasing ring size
- C-O Stretch in two or more bands, one stronger and broader than the other, occurs in the range $1300 1000 \text{ cm}^{-1}$

AMIDES

• N-HStretch in primary amides $(-NH_2)$ gives two bands near 3350 and 3180 cm⁻¹. Secondary amides have one band (-NH) at 3300 cm⁻¹

• N-HBending occurs around 1640 – 1550 cm⁻¹ for primary and secondary amides.

ACID CHLORIDES

• C=O Stretch occurs in the range 1810 – 1775 cm⁻¹ in unconjugated chlorides. Conjugation lowers the frequency to 1780 – 1760 cm⁻¹

• C-Cl Stretch occurs in the range 730 – 550 cm^{-1}

ANHYDRIDES

C=O Stretch always has two bands, 1830
- 1800 cm⁻¹ and 1775 - 1740 cm⁻¹

• C-O Stretch (multiple bands) occurs in the range $1300 - 900 \text{ cm}^{-1}$

AMINES

• N-HStretch occurs in the range 3500 - 3000 cm⁻¹

• N-HBend in primary amines results in a broad band in the range 1640-1560 cm⁻¹

• N-H omp bending absorption can sometimes be observed near 800 cm⁻¹

• C-N Stretch occurs in the range 1350 – 1000 cm⁻¹

NITRILES

• -C=N Stretch is of medium intensity, sharp absorption near 2250 cm⁻¹

ISOCYANATES

• -N=C=S Stretch in an isocyanate gives a broad, intense absorption near 2270 cm⁻¹

IMINES

• C=N Stretch in an imine, oxime, and so on gives a variable-intensity absorption in the range 1690-1640 cm⁻¹

NITRO COMPOUNDS

O=N=O Aliphatic nitro compounds : asymmetric stretch (strong), 1600-1530 cm⁻¹; symmetrical stretch (medium), 1390-1300 cm⁻¹Aromatic nitro compounds (conjugated): asymmetric stretch (strong) 1550 - 1490 cm⁻¹; symmetric stretch (strong), 1355 - 1315 cm⁻¹

CARBOXYLATE SALTS

• O=C=O Assymetric stretch (strong) occurs near 1600 cm⁻¹

Symmetrical stretch (strong) occurs near 1400 cm⁻¹

AMINE SALTS

• N-H Stretch (broad) occurs at 3300-2600 cm⁻¹

• N-H Bend (strong) occurs at 1610 – 1500 cm⁻¹

AMINO ACIDS

These compounds exist as zwitterions (internal salts) and exhibit spectra that are combinations of carboxylate and primary amine salts. Amino acids show NH_3^+ stretch (very broad), N-H bend (asymmetric/symmetric), and COO⁻ stretch (asymmetric/symmetric)

SULFUR COMPOUNDS

MERCAPTANS

S-H Stretch, one weak band, occurs near 2550 cm⁻¹ and virtually confirms the Presence of this group.

SULPHIDES

• R-S-R Little useful information is obtained from the IR

SULFOXIDES

• S=O Stretch, one strong band, occurs near 1050 cm^{-1}

SULFONES

• C=O Asymmetric stretch (strong) occurs at 1300 cm⁻¹

Symetric stretch (strong) at 1150 cm⁻¹

SULFONYL CHLORIDES

• S=OAsymmetric stretch (strong) occurs at 1375 cm⁻¹

Symmetric stretch (strong) at 1185 cm⁻¹

SULFONATES

• S=OAsymmetric stretch (strong) occurs at 1350 cm⁻¹,

Symmetric stretch (strong) at 1175 cm⁻¹

• S-O Stretch, several strong bands, occurs in the range 1000 - 750 cm⁻¹

SULFONAMIDES

• S=OAsymmetric stretch (strong) occurs at 1325 cm⁻¹

Symmetric stretch (strong) at 1140 cm⁻¹

• N-HPrimary stretch occurs at 3350 and 3250 cm⁻¹, Secondary stretch occurs at 3250 cm⁻¹; bend occurs at 1550 cm⁻¹

SULFONIC ACIDS

• S=O Asymmetric stretch (strong) occurs at 1325 cm⁻¹

Symmetric stretch (strong) at 1140 cm⁻¹

PHOSPHORUS COMPOUNDS

PHOSPHINES

- P-H Stretch, one strong, sharp band at $2320 2270 \text{ cm}^{-1}$
- PH_2 Bend, Medium bands, at 1090 1075 cm-1 and 840 810 cm⁻¹

• P-H Bend, Medium band, at 990 - 885 cm⁻¹

- P-CH₃ Bend, medium bands, at 1450-1395 cm⁻¹ and 1346 1255 cm⁻¹
- P-CH₂ Bend, medium band, at 1440 1400 cm⁻¹

PHOSPHINE OXIDES

• P=OStretch, one very strong band, at $1300 - 1240 \text{ cm}^{-1}$

PHOSPHATE ESTERS

- P=OStretch, one very strong band, at 1300 1240 cm⁻¹
- R-O Stretch

ALKYL AND ARYL HALIDES

FLUORIDES

• C-F Stretch (strong) at 1400 – 1000 cm⁻¹ Aryl fluorides absorb between 1250 and 1100 cm⁻¹

CHLORIDES

- C-Cl Stretch (strong) in aliphatic chlorides occurs in the range 785 -540 cm⁻¹ Aryl chlorides absorb between 1100 and 1035 cm⁻¹
- $CH_2 Cl$ Bend (wagging) at 1300 -1230 cm⁻¹

BROMIDES

• C-Br Stretch (strong) in aliphatic bromides occurs at $650 - 510 \text{ cm}^{-1}$

Aryl bromides absorb between 1075 and 1030 cm⁻¹

• CH₂-Br Bend (wagging) at 1250 - 1190 cm⁻¹

IODIDES

- C-I Stretch (strong) in aliphatic iodides occurs at 600 485 cm⁻¹
- CH₂-I Bend (wagging) at 1200 1150 cm⁻¹

3) MASS Spectroscopy⁵⁻⁷

Mass spectroscopy is a powerful analytical technique for identifying the unknown compounds by determining their molecular weights, for qualitative and quantitative determination (bulk, surface and depth analysis) of trace and ultra trace levels of organic compounds and inorganic elements in different matrices and for understanding the physical and chemical properties of different molecules¹.

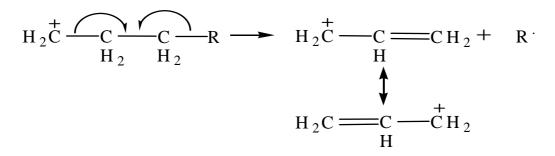
Common Fragment Ions and Neutral Fragments

Common Small Ions		Common N	Common Neutral Fragments	
m/z	Composition	mass loss	composition	
15 amu	CH ₃	1 amu	Н	
17	OH	15	CH ₃	
18	H ₂ O	17	OH	
19	H ₃ O, F	18	H ₂ O	
26	C_2H_2 , CN	19	F	
27	C_2H_3	20	HF	
28	C_2H_4 , CO , H_2CN	27	C_2H_3 , HCN	
29	C_2H_5 , CHO	28	C_2H_4 , CO	
30	CH_2NH_2	30	CH ₂ O	
31	CH ₃ O	31	CH ₃ O	
33	SH, CH ₂ F	32	CH ₄ O, S	
34	H_2S	33	$CH_3 + H_2O$, HS	
35(37)*	Cl	33	H_2S	
36(38)*	HC1	35(37)*	Cl	
39	C_3H_3	36(38)*	HC1	
41	$C_{3}H_{5}, C_{2}H_{3}N$	42	$C_{3}H_{6}, C_{2}H_{2}O, C_{2}H_{4}N$	
42	$C_{3}H_{6}, C_{2}H_{2}O, C_{2}H_{4}N$	43	C ₃ H ₇ , CH ₃ CO	
43	C_3H_7 , CH_3CO	44	CO_2O , $CONH_2$	
44	C_2H_4O	45	C ₂ H ₅ O	
46	NO_2	55	C_4H_7	
56	C_4H_8	57	C ₄ H ₉	
57	C_4H_9	59	$C_2H_3O_2$	
60	CH ₄ CO ₂	60	$C_2H_4O_2$	
79(81)*	Br	64	SO_2	
80(82)*	HBr	79(81)*	Br	
91	C_7H_7	80(82)*	HBr	
127	Ι	127	Ι	
128	HI	128	HI	

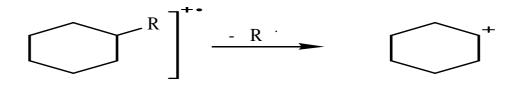
General rules for predicting prominent peaks in EI spectra

1. The relative height of the molecular ion peak is greatest for the straight chain compound and decreases as the degree of branching increases.

2. The relative height of molecular ion peak usually decreases with increasing molecular weight in a homologous series (Fatty acid esters are exception).

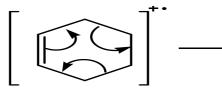

3. Cleavage is favored at alkyl-substituted carbon, the more substituted carbon – the more likely is the cleavage. This is because of the stability of the cation formed.

Cation stability order ${}^{+}CH_3 < R'-CH_2^+ < R'_2CH^+ < R'_3C^+$.

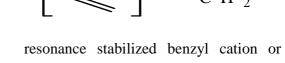

Generally a largest substitent at a branch is eliminated as radical.

4. Double bonds, cyclic structures and especially aromatic rings stabilize the molecular ion and thus increase the probability of its appearance.

 Double bonds favor allylic cleavage and give the resonance stabilized allylic carbocation.



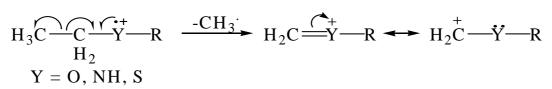
6. Saturated rings tend to loose alkyl side chains at the α – bond. The positive charge tends to stay with ring.



Unsaturated rings can undergo a retro Diels – Alder reaction.

Available Online At www.ijprbs.com

 In alkyl substituted aromatic compounds, cleavage is very probable at the bond β to the ring giving rise a



more likely the tropylium ion.

resonance stabilization.

 $\begin{array}{c} & & \\$

 The C – C bonds next to heteroatoms are frequently cleaved leaving the charge on the fragment containing the heteroatoms,

 Cleavage is often associated with elimination of small stable natural molecules such as CO, H₂O, NH₃, H₂,

Nitrogen rule: Nitrogen atom has even aromatic weight and odd valency Other elements have both odd or even.

Due to this reason molecules containing an odd number of nitrogen atoms have odd integral molecular weight. Those with no nitrogen or even nitrogen have even HCN, ketene, alcohols, olefins etc. with rearrangements.

where non-bonding electrons provide

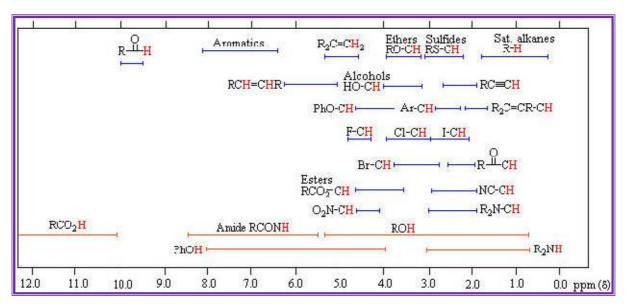
integral molecular weight. This is called nitrogen rule.

4) NMR Spectroscopy⁸⁻¹¹:

NMR spectroscopy is powerful for structure elucidation / however degradation and impurity product analysis is difficult on the micro scale.

There are two types of NMR Spectroscopy:

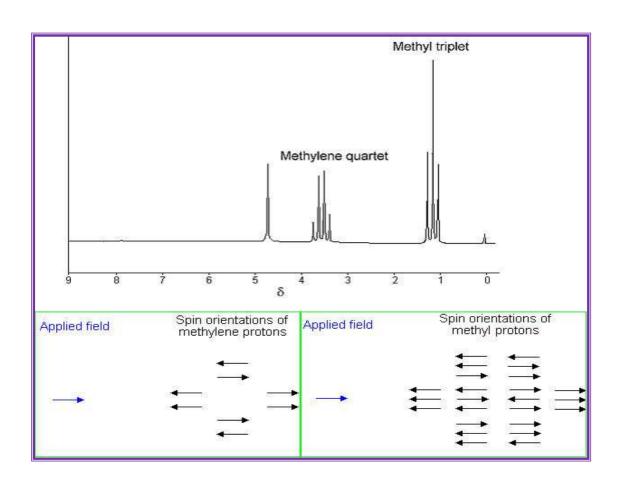
ISSN: 2277-8713 *IJPRBS*


 \succ H¹NMR Spectroscopy

 \succ C¹³NMR Spectroscopy

 H^1 NMR Spectroscopy gives information about the hydrogen atom environment where as C^{13} NMR Spectroscopy gives information about the carbon atom environment.

Chemical shift is a function of the nucleus and its environment. The difference of


absoption frequencies between protons is very small (in Hz) compared to the applied field (MHz). Therefore, chemical shifts expressed expressed in parts per million (ppm). It is measured relative to a reference compound. For ¹H NMR, the reference is usually 0 ppm for tetramethylsilane, Si (CH₃)₄.

Some standard ranges of ¹H NMR chemical shifts in organic compounds.

Splitting patterns is quite straightforward;

The multiplicity of a multiplet is given by the number of equivalent protons in neighbouring atoms plus one, i.e. the n + 1rule. For example, in the ¹H NMR spectrum of ethanol (below) the methyl peak has been split into three peaks (a triplet) and the methylene peak has been split into four peaks (a quartet) due to spin-spin coupling.

C¹³ NMR Spectroscopy:

 C^{13} NMR Spectroscopy gives the information about the carbon atom environment. The basic different between the C13 and H1 NMR Spectroscopy is the delta value is higher than H1 NMR Spectroscopy and Splitting due to the adjust ant carbon atom rather than proton. The delta value for the functional group are given below

Mahendra Patel, IJPRBS, 2012: Volume1 (3):145-		ISSN: 2277-8713 <i>IJPRBS</i>
R-CH ₃	8 - 30	
R ₂ -CH ₂	15 – 55	
R ₃ -CH	20 - 60	
C-I	0 - 40	
C-Br	25 - 65	
C-Cl	35 - 80	
C-N	30 - 65	
C-0	40 - 80	
C≡C	65 – 90	
C=C	100 - 150	
C≡N	100 - 140	
Benzene	110 – 175	
RCOOR	155 – 185	
RCOOH	155 – 185	
RCONH ₂	155 – 185	
RCHO	185 - 220	
RCOR	185 - 220	

REFERNCES

1. Sharma BK: Instrumental methods for chemical analysis, Goel publication house, Meera: 193-333.

2. Pavia and Lampman: Introduction to Spectroscopy, third edition: 13-82.

 Robert MS: Spectroscopic Identification of organic compounds. Seventh edition: 72 – 108. 4. Skoog: Principal of instrumental analysis, second edition: 209-254.

5. Sharma BK: Instrumental methods for chemical analysis, Goel publication house, Meera: 844-938.

6. Pavia and Lampman: Introduction to Spectroscopy, third edition: 390-446.

ISSN:	2277-8713
	IJPRBS

 Robert MS: Spectroscopic Identification of organic compounds. Seventh edition: 13-37.

8. Sharma BK: Instrumental methods for chemical analysis, Goel publication house, Meera: 619-736, 774-804.

9. Pavia and Lampman: Introduction to Spectroscopy, third edition: 102-153, 167-194.

10. Robert MS: Spectroscopic Identification of organic compounds. Seventh edition: 127-282.

11. Skoog: Principal of instrumental analysis, second edition: 376 - 452.