
Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 198

Measurement of Processes in Open Source Software Development

Parminder Kaur

Hardeep Singh
Abstract
Purpose: This paper attempts to present a set of basic metrics which can be used
to measure basic development processes in an OSS environment.
Design/Methodology/Approach: Reviewing the earlier literature helped in
exploring the metrics for measuring the development processes in OSS
environment.
Results: The OSSD is different from traditional software development because of
its open development environment. The development processes are different and
the measures required to assess them have to be different.
Keywords: Open Source Software (OSS); Free Software; Version Control; Open
Source Software Metrics; Open Source Software Development
Paper Type: Conceptual

Introduction

ree software [FS], term given by Richard Stallman, introduced in
1984, can be obtained at zero cost i.e. software which gives the
user certain freedoms. Open Source Software (OSS), term coined

by Eric Raymond, in 1998, is software for which the source code is freely
and publicly available, though the specific licensing agreements vary as to
what one is allowed to do with that code . In the case of FS, only
executable file is made available to the end user, through public domain
and end user is free to use that executable software in any way, but the
user is not free to modify that software. The alternative term Free/Libre
and Open Source Software (FLOSS) refers to software whose licenses give
users four essential ‘freedoms’:

 To run the program for any purpose,
 To study the workings of the program, and modify the

program to suit specific needs,
 To redistribute copies of the program at no charge or for a

fee, and
 To improve the program, and release the improved, modified

version (Perens, 1999; 2004).
The free software movement is working toward the goal of making all
software free of intellectual property restrictions which hamper technical
improvement whereas OSS users do not pay royalties as no copyright
exists, in contrast to proprietary software applications which are strictly

 Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar-
143005, India. email: parminderkaur@yahoo.com
 Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar-
143005, India. email: hardeep_gndu@rediffmail.com

F

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 199

protected through patents and Intellectual Property Rights (IPR’s) (Asiri,
2003; Wheeler, 2003). OSS is software for which the source code is
publicly available, though the specific licensing agreements vary as to
what one is allowed to do with that code (Stallman, 2007).

Open Source Software Development
Open Source Software Development (OSSD) produces reliable, high
quality software in less time and with less cost than traditional methods.
Adelstein (2003) is even more evangelical, claiming that OSSD is the
“most efficient” way to build applications. Schweik and Semenov (2003)
add that OSSD can potentially “change, perhaps dramatically, the way
humans work together to solve complex problems in computer
programming”. Even when there is a great level of exaggeration, OSS can
be used as an alternative to traditional software development. Raymond
(1998) compares OSSD to a “bazaar” – a loosely centralized, cooperative
community where collaboration and sharing enjoy religion status.
Conversely, traditional software engineering is referred to as a
“cathedral” where hierarchical structures exist and little collaboration
takes place.
 Problems with Traditional Development
Traditional software development projects suffer from various issues
such as time and cost overruns, largely unmaintainable, with
questionable quality and reliability. The 1999 Standish Group report
revealed that 75% of software projects fail in one or more of these
measures, with a third of projects cancelled due to failure. In addition,
systems often fail to satisfy the needs of the customer for whom they are
developed (Sommerville, 1995). These failures are ascribed to:

 Inadequate understanding of the size and complexity of IS
development projects coupled with inflexible, unrealistic
timeframes and poor cost estimates (Hughes & Cotterell, 1999;
McConnell, 1996).

 Lack of user involvement (Addison & Vallabh, 2002; Frenzel,
1996; Hughes & Cotterell, 1999; McConnell, 1996).

 Shortfalls in skilled personnel (Addison & Vallabh, 2002;
Boehm, 1991; Frenzel, 1996; Hughes & Cotterell, 1999;
Satzinger, Jackson & Burd, 2004).

 Project costs are further increased by the price of license fees
for software and tools required for application development as
well as add-on costs for exchange controls.

 Benefits of Open Source Software
The benefits with OSS (Feller & Fitzgerald, 2001; FLOSS Project Report,
2002) are as follows:

 Collaborative, parallel development involving source code

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 200

sharing and reuse

 Collaborative approach to problem solving through constant
feedback and peer review

 Large pool of globally dispersed, highly talented, motivated
professionals

 Extremely rapid release times

 Increased user involvement as users are viewed as co-
developers

 Quality software

 Access to existing code
Despite these benefits, perceived disadvantages of OSS are:

 In the rapid development environment, the result could be slower,
given the absence of formal management structures (Bezroukov,
1999; Levesque, 2004; Valloppillil, 1998).

 Strong user involvement and participation throughout a project is
becoming problematic as users tend to create bureaucracies which
hamper development (Bezroukov, 1999).

 OSS is premised on rapid releases and typically has many more
iterations than commercial software. This creates a management
problem as a new release needs to be implemented in order for an
organization to receive the full benefit (Farber, 2004).

 The user interfaces of open source products are not very intuitive
(Levesque, 2004; Valloppillil, 1998; Wheatley, 2004).

 As there is no single source of information as well as no help desk
therefore no ‘definitive’ answers to problems can be found
(Bezroukov, 1999; Levesque, 2004).

 System deployment and training is often more expensive with OSS
as it is less intuitive and does not have the usability advantages of
proprietary software.
 Open Source Software Development Models

There are several basic differences between OSSD and traditional
methods. The System Development Life Cycle (SDLC) of traditional
methods have generic phases into which all project activities can be
organized such as planning, analysis, design, implementation and support
(Satzinger, Jackson & Burd, 2004). Also, open source life cycle for OSSD
paradigm demonstrates several common attributes like parallel
development and peer review, prompt feedback to user and developer
contributions, highly talented developers, parallel debugging, user
involvement, and rapid release times.
Vixie (1999) holds that an open source project can include all the
elements of a traditional SDLC. Classic OSS projects such as BSD, BIND

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 201

and SendMail are evidence that open source projects utilize standard
software engineering processes of analysis, design, implementation and
support.
Mockus, Fielding & Herbsleb (2000) describe a life cycle that combines a
decision-making framework with task-related project phases. The model
comprises six phases like roles and responsibilities, identifying work to be
done, assigning and performing development work, pre-release testing,
inspections, and managing releases.
Jorgensen (2001) provides a more detailed description of specific product
related activities that support the OSSD process. The model (Fig. 1)
explains the life cycle for changes that occurred within the Free BSD
project.

Fig.1: Jorgensen Life-Cycle, 2001

Jorgensen’s model is widely accepted (Feller & Fitzgerald, 2001; FLOSS
Project Report, 2002) as a framework for the OSSD process, on both
macro (project) and micro (component or code segment) levels.
However, flaws remain. When applied to an OSS project, the model does
not adequately explain where or how the processes of planning, analysis
and design take place.
Schweik and Semenov (2003) propose an OSSD project life cycle
comprising three phases: project initiation; going ‘open’; and project
growth, stability or decline. Each phase is characterized by a distinct set
of activities.
Wynn (2004) proposes a similar open source life cycle but introduces a
maturity phase in which a project reaches critical mass in terms of the
numbers of users and developers it can support due to administrative
constraints and the size of the project itself.
Roets, et al. (2007) expands Jorgensen life-cycle model and incorporates
aspects of previous models, particularly that of Schweik and Semenov
(2003). In addition, this model attempts to encapsulate the phases of the
traditional SDLC (Fig. 2). This model facilitates OSS development in terms

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 202

of improved programming skills, availability of expertise and model code
as well as software cost reduction.

Fig. 2: Roets, et al. life-cycle model of OSSD projects, 2007

 Comparison of Traditional Life-Cycle with OSSD Life-Cycle
Fig. 3 compares different phases of traditional software development life-
cycle with OSSD life-cycle mentioned in Fig.2.

Fig. 3: Comparison of Traditional Life-Cycle with OSSD Life-Cycle

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 203

Initiation phase of OSSD life –cycle combines three phases i.e. planning
phase, analysis phase and design phase of traditional software
development life-cycle. As it is suggested that it may be more important
to get design right prior to actual programming so that all developers are
working towards a clearly defined common purpose. Implementation
phase combines the different aspects like review, contribution, pre-
commit test and release of production. As multiple users as well as skilled
personnel are involved in OSSD, parallel debugging and different versions
of one piece of code can be grouped together with support phase of
traditional software development life-cycle.

Proposed Metrics for the Selected Model
Keeping in view OSSD life - cycle model proposed by Roets, et al. (2007),
a following set of metrics is proposed to keep a check over the generation
of multiple processes in OSSD.

Total Number of Contributions
Under the considered model, a large number of users in an open
environment contribute towards the development of the project. This
metrics assesses the total number of contributors for the projects. This
number can be a number of unique contributors or some contributors
may be associated with multiple projects. However, this metric is related
to the number of contributors for a given project irrespective of their
affiliations to other projects.

Average Domain Experience of Contributors
A particular project is developed on a specific domain. Usually the
contributors having some expertise and experience in that domain area
contribute to the project. This metric helps in evaluating the average
experience of all the contributors taken together and can be represented
as

Cumulative Experience of Contributor i.e.
n

E = ∑ ei

i = 1

[Where ei is the experience of an individual contributor in that domain]

Average Experience of Contributors
i.e. Eavg = E / N

[Where N is total number of contributors]

This metrics tends to measure the extent of support to the development
of a project by the contributors. It is safe to assume that greater the
average experience of a contributor, more robust development of the
project would be.

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 204

 Average Time for a Completion of a Version of Project
Quick versioning is the essence of OSS development. However,

different versions at different rates of time depending upon the factors
like number of contributors, their experience, nature of project,
complexity of the project etc. The average time for a completion of a
version of project can be calculated as:

Average Time i.e. Tavg = Ttotal / Nversion

[Where Ttotal is total time taken to develop all the versions and Nversion is
the total number of versions generated]

Greater Tavg would indicate software development processes
resulting from various factors like low number of contributors, their lack
in experience or complexity of the project etc.

 Bugs Track per Version
Quality of OSS is always a question. However, with proper bug

tracking mechanism and tools in place, the bug tracking can be made very
effective and the quality of OSS can be enhanced. The number of bugs
tracked per version is an indication of quality and reliability of the
product. Hence, this measure can be put to an effective use for
enhancing the quality of the final product.

 Patch Accept Ratio
Every contributor sends a patch for the enhancement of the

product. However, it is not necessary that every patch sent by the
contributor(s) is accepted for updating the product. The Patch Accept
Ratio i.e. Pratio can be defined as:

 otal no of patches accepted

 otal no of patches accepted

A high Patch Accept Ratio shall effectively argue for a high competence of
contributors and reverse is true for the less patch ratios.

 Number of effective Reviews Received
In addition to the development of patches, some contributors send

their reviews about the products in making. A large number of effective
reviews indicate that some functionality was not taken care of by either
the developing contributor or the mentors. Greater the number of
effective reviews more is the gaps in the development process.
Therefore, the number of effective reviews can result in an effective
developmental methodology.
Conclusion
The OSSD is different from traditional software development because of
its open development environment. The development processes are

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 205

different and the measures required to assess them have to be different.
This paper attempts to present a set of basic metrics which can be used
to measure basic development processes in an OSS environment.
However, these need to be validated and established by using them on
large number of systems.

References
Addison, T., & Vallabh, S. (2002). Controlling software project risks - an

empirical study of methods used by experienced project
managers. In Proceedings of the 2002 annual research
conference of the South African institute of computer scientists
and information technologists on Enablement through
technology (SAICSIT '02) (128-140). Republic of South Africa:
South African Institute for Computer Scientists and Information
Technologists. Retrieved from

 http://dl.acm.org/citation.cfm?id=581506.581525
Adelstein, T. (2003). How to misunderstand open source software

development. Retrieved from
http://www.consultingtimes.com/ossedev.html

Asiri, S. (2003). Open source software. SIGCAS Computers and Society, 33
(1), 2. doi: 10.1145/966498.966501

Bezroukov, N. (1999). Open source software development as a special
type of academic research: Critique of vulgar Raymondism. First
Monday. 4 (10). Retrieved from
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/arti
cle/view/696/606

Boehm, B. (1991). Software risk management: principles and practices.
IEEE Software, 8(1), 32-41.

Farber, D. (2004). Six barriers to open source adoption. Retrieved from
 http://www.zdnetasia.com/six-barriers-to-open-source-

adoption-39173298.htm
 Feller, J., & Fitzgerald, B. (2001). Understanding open source software

development. London: Addison-Wesley.
FLOSS Project Report. (2002). Floss Project Report: Free/Libre and open

source software (FLOSS): Survey and study. Retrieved from
http://www.infonomic.nl/floss/report/

Frenzel, C. (1996). Management of Information Technology (2
nd

 ed).
Cambridge, MA: CTI

Hughes, B., & Cotterell, M. (1999). Software project management (2
nd

 ed).
Berkshire, United Kingdom: McGraw-Hill.

Jorgensen, N. (2001). Putting it all in the trunk: Incremental software
development in the FreeBSDopen source project. Information

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 206

Systems Journal, 11(4), 321-336. doi:10.1046/j.1365-
2575.2001.00113.x

Levesque, M. (2004). Fundamental issues with open source software
development. First Monday. 9 (4). Retrieved from

 http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/arti
cle/view/1137/1057

McConnell, S. (1996). Avoiding Classic mistakes. IEEE Software, 13(5),
111-112. doi: 10.1109/52.536469

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2000). Two case studies of
open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and Methodology,
11(3), 309-346. doi:10.1145/567793.567795

Perens, B. (1999). The open source definition. In M. Stone, S. Ockman &
C. Dibona (Eds.), Open sources: Voices from the open source
revolution. Sebastopol, California: O'Reilly & Associates.

Perens, B. (2004). The open source definition. Retrieved from
http://opensource.org/docs/def_print.php

Raymond, E. (1998). The cathedral and the bazaar. First Monday. 3 (3).
Retrieved from

 http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/arti
cle/view/1488/1403

Roets, Minnaar., et al. (2007). Towards Successful Systems Development
Projects in Developing Countries. In Proceedings of the 9th
International Conference on Social Implications of Computers in
Developing Countries, São Paulo, Brazil, May 2007.

Satzinger, J. W., Jackson, R. B., & Burd, S. D. (2004). Systems Analysis and
Design in a Changing World(3

rd
 ed). Boston: Course Technology.

Schweik, C. M., & Semenov, A. (2003). The institutional design of open
source programming: Implications for addressing complex public
policy and management problems. Retrieved from

 http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/arti
cle/view/1019/2426

Sommerville, I. (1995). Software Engineering (5
th

 ed). Harlow: Addison-
Wesley Longman Limited.

Stallman, R (2007). Why “Free Software” is better than “Open Source”.
Retrieved from
http://www.gnu.org/philosophy/free-software-for-
freedom.html

Valloppillil, V. (1998). Open source Initiative (OSI) Halloween I: A (new?)
software development methodology. Retrieved from
http://www.opensource.org/halloween/halloween1.php#comm
ent28

Measurement of Processes in Open Source Software Development Kaur & Singh

TRIM 7 (2) July - Dec 2011 207

Vixie, P. (1999). Software Engineering. In M. Stone, S. Ockman & C.
Dibona (Eds.), Open sources: Voices from the open source
revolution. Sebastopol, California: O'Reilly & Associates.

Wheatley, M. (2004). Open Source: The myths of open source. CIO, March
01, 2004. Retrieved from

 http://www.cio.com/article/32146/Open_Source_The_Myths_o
f_Open_Source

Wheeler, D. A. (2003). Why open source software/free software (OSS/FS)?
Look at the numbers! Retrieved from

 http://www.dwheeler.com/oss_fs_why.html
Wynn, Jr. D. E. (2004). Organizational structure of open source projects: A

life cycle approach. In proceedings of the 7th Annual Conference
of the Southern Association for Information Systems, Savannah.
Retrieved from

 http://sais.aisnet.org/2004/.%5CWynn1.pdf

