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Abstract

The dependence between a pair of continuous variates can be numerous with potentially surprising
implications. Global dependence measures, such as Pearson correlation coefficient, can not reflect the
complex dependence structure of two variables. For bivariate data set the dependence structure can not only
be measured globally, but the dependence structure can also be analyzed locally. Thus, scalar dependence
measures are extended to local dependence measures. In this study, determination of local dependence
structure of bivariate data is discussed. For this, some graphical methods called chi-plot and local dependence
map are used and examples with simulated and economic data set are illustrated.
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Ozet

Iki degisken arasmdaki bagimlilik yapist hakkinda bilgi sahibi olmak oldukca énemlidir. Giintimiizde yay-
gin olarak kullanilan global bagimlilik 6lgiileri (Ornegin: Pearson korelasyon katsayisi gibi), iki degisken arasin-
daki karmagik bagimlilik yapisini tam olarak yansitamamaktadir. Bu nedenle iki degisken arasindaki bagimlilik
yapisini sadece global bagimlilik 6lgiileri ile degil lokal bagimlilik olgtileri ile de incelemek gerekir. Caligmada,
iki degisken arasindaki bagimlilik yapisinin belirlenmesinde kullanilan lokal bagimlilik 6lciileri incelenmis ve
bu yapinin belirlenmesinde oldukga pratik araglar olan ki-grafigi ve yerel bagimlilik haritalari kullanilarak uy-
gulama yapilmig ve yorumlanmugtir.
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1. Introduction

Dependence relations between random variables is one of the most widely studied
topics in probability theory and statistics. For a bivariate data set the dependence structure
can not only be measured globally, for example with the Pearson correlation coefficient,
but the dependence structure can also be analyzed locally.

In this paper two graphical methods for analyzing dependence locally are discussed.
These two methods indicate dependence quite differently. One graphical tool is the
chi-plot introduced by (Fisher and Switzer, 1985). This utilizes the chi-measure to
draw a plot which is approximately horizontal under independence. Another tool is
local dependence map which is based on a new local dependence function which was
introduced by (Bairamov et al., 2003). The new local dependence function is based on
regression concepts and it can characterize the dependence structure of two random
variables locally at the fixed points. It is possible to estimate the new local dependence
function from data using, for example kernel methods. The local dependence map is
constructed by applying this estimate. The local dependence map is a tool which makes
local dependence easily interpretable. Via local permutation testing, local dependence
maps simplify the estimated local dependence structure between variables by identifying
regions of positive, zero and negative local dependence.

The organization of this paper is as follows: The next section introduces and discusses
chi-plot. Section 3 introduces and discusses the local dependence map. Section 4 contains
some examples of simulated and real data. Section 5 contains conclusion.

2. Chi-Plot

Fisher and Switzer (1985, 2001) introduce and discuss chi-plot that displays detailed
and explicit information about the association between the two variables X and Y.

Chi-plot has some characteristic shapes depending on (a) whether the variables
are independent or not, (b) have some degree of association, (c) have more complex
dependence structure. The chi-plot does not depend on the value of pure data but it
depends on data through the values of their ranks.

Let (X,Y), (i=1,2,...,n) be a random sample with bivariate distribution function, H.
And let /(Z) be an indicator function of the event Z. For each n bivariate sample points
(X,Y), the (X,Y) plane is divided into quadrants by intersecting the regions X< X, and
Y<Y,. The cut point (X,Y)) is just the i” element of the random sample. Thus, we have
n-1 remaining bivariate sample points. And these points are distributed among the four
quadrants. By using these quadrant frequencies sample bivariate distribution function H
and sample marginal distribution functions ¥ and G, are generated. For each data point
(X,Y), i=12,...,n;
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If the variables X and Y are statistically independent, we expect the joint bivariate
distribution function H, to be equal to the multiplication of the marginal distribution functions
F, and G, at each of the sample cut point, (X Y;). With appropriate scaling, the differences
H, —-F (X,)xG (Y,) will behave asymptotically like a standard normal variable under
random sampling from independent marginals. The appropriate scaling factor that will

transform the difference H, —F,(X,)xG,(Y;) to a standard normal variable is:

1
[n2S ] . where S} =F, (1-F, )xG, (1-G, ) )

]

Summing all this information, we can find the signed and scaled measure: “standardized

departure from bivariate statistical independence” by: yx, = (H . —F,G, }S i=1,2,...n. At

each sample point, x, actually acts like a correlation coefficient between dichotomized X
values and dichotomized Y values. Hence, ), can take only the values in the interval /-1,1].

X, asymptotically approaches to p as A, —0;i.e, lim (Z}h )= p . If Yis a strictly increasing
Dy =0

function of X, then ), = I for all sample cut points, and vice versa. Under the independence
of X and Y; if the marginal frequencies are not too close to zero or one, the approximate
normal distribution of each X, (i=1,2,...n) will not be affected. Therefore, A should be a real

valued function of the marginal frequencies. If x, values are plotted against 4, values, for

i=1,2,...,n, the plot will asymptotically show normal vertical scatter with variance L around
n

the horizontal y =0, under the independence of X and Y. As a result, the association between

X and Y can be determined by the departures from that zero-centered vertical scatter. (Fisher

and Switzer, 1985) had chosen A as:
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1y 1y
A =4sgn maxs| F ——|,|G —— 3
gn, {( 2}( 2]} 3)
where sgn =sgn (F 7lj ,(G 71)
n; n; 2 n; 2

Similar to y, values, all values of 4, must also lie in the interval /-/,1]. When the

bivariate data (X, Y;), (i=1,2,...,n) are random bivariate sample from independent continuous

marginals, then the values of 4, are individually uniformly distributed. However when X and

Y are somehow associated, then the values of 4, may show clustering.

If X and Y are positively correlated, 4, will tend to be positive and if negatively
correlated, 4, will tend to be negative. The contrary is an exception. Thus, we may think
‘/1,,] ‘ as a “measure of the distance” from the sample point (X; ¥;) to the bivariate median of the

distribution. As a result of this property of A, sample points that cause departure from
independence could be seen on the chi-plot. Moreover we can see the direction of those points

with respect to the centre of the data set. Those sample points for which

24§(%—%} , have not been plotted in the illustrations in order to avoid any
n—

A,

probable confusions. This censoring criterion will eliminate at most § points. If there is no
degree of monotone dependence between X and Y but there is some dependence of a more

complex nature, this will be manifested in the ¥ values in terms of the increased scatter, and

possibly non-uniform increase in scatter, along the A-axis.

3. Local Dependence Map

Local dependence map is another graphical tool for determination of local dependence
structure of bivariate random variables. Unlike chi-plot and K-plot, local dependence
map depends on the bivariate density function.

Local dependence function was introduced by (Holland and Wang, 1987) and is
further developed in a series of subsequent papers by (Jones, 1996, 1998) and Jones
and Koch (2002). It is based on the mixed partial derivatives of the logarithm of the
bivariate density function. (Bairamov et al., 2003) introduced a new local dependence
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function based on regression concepts. This measure is symmetric with respect to two
random variables and its expected value is approximately equal to the Pearson correlation
coefficient. It is possible to estimate the new local dependence function from data using
the kernel methods.

(Bairamov and Kotz, 2000) suggested an estimator for H(x,y) by using Nadaraya and
Watson’s (1964) estimate for the regression functions E(X/Y=y) and E(Y/X=x).

i), 3050

A== » Joand G-t

S50 S5

where (X[,, Yl.), i=1,2,...,n are the data, K is a kernel function, an integrable function with
short tails, and & is a width sequence tending to zero at appropriate rates. The estimate
for H(x,y) is:

(4)

s K= AON(T = A1)
S.S, (5)

\/1{)?— 1:1)(()1)] \/H[?—Ay(x)j
S, s,

The first step to estimate H(x,y) is to take the kernel to be the product of biweight
univariate densities:

Axy) =

KBe!a(u):(15/16)(1_u2)2a -1<u<l (6)

We prefer this kernel to estimate H(x,y), because it has computational advantages

over the normal kernel. After determining the kernel function, we determine that 2 = L
n

Generally, it is hard to interpret the dependence structure of the bivariate random
variables from their local dependence functions. It can be argued that the local dependence
function convey information that is too detailed to be easily interpretable. This fact
motivates (Jones and Koch, 2002) to make local dependence a more interpretable tool,
by introducing so called dependence maps. In this study we construct a new dependence
map by using local dependence function of (Bairamov et al.’s, 2003) which is based
on regression concept. Via local permutation testing, dependence maps simplify the
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estimated local dependence structure between variables by identifying regions of
(significant) positive, (nonsignificant) zero, and (significant) negative local dependence
(Ege Orug and Uger H., 2009).

Local permutation test is applied to construct dependence maps. Local permutation
test’s null hypothesis H(x,y)=0 is equivalent to independence. Samples satisfying the
hypothesis H(x,y)=0 can be generated. This procedure is repeated n times and it is
computed for each permuted data set H,(x, y,). When the estimated local dependence
function is the highest (a/2)% of the simulated H (x, y ) is designated to be (+1) and
also when the estimated local dependence function is the lowest (a/2)% of the simulated
H,(x, y) is designated to be (-1) and otherwise it is zero. Then by using these values,
the dependence map could be designed easily. On the contour plot, the areas that have
zero estimated local dependence are colored by light grey, the positive estimated local
dependence are colored by white, and the negative estimated local dependence are colored
by dark grey. In order to stabilize whether the estimated local dependence function )//‘is
significant or insignificant (i.e.zero), multiple hypothesis are tested by Local Permutation
Test (Uger H. and Bayramoglu, 2007). This makes the visual inspection much easier. If
the estimated local dependence is near zero, local permutation test accepts it as zero
dependence and avoids over interpretation of the sign of the local dependence when
insignificant.

4. Examples

Example 1. The example 1 concerns the data set gasoline tax and price: We obtain the
data from a report published by the U.S. Energy Information Administration (Petroleum
Marketing Monthly). There are /00 observations on the following 2 variables: gasoline
price and tax. Scatter plot shows nearly a perfect positive dependence between these
two variables, and the correlation coefficient is found to be 0.876, which is significantly
different from zero. Chi-plot displays positive monotone association between the
variables and moreover local dependence map also exhibits the positive dependence
with dominant white area. But the dependence map is particularly informative here.
Although there is a positive correlation between the variables, two different dependence
structures are observed in Fig. 1. In the white region where the variables simultaneously
take low, moderate and large values, positive dependence between gasoline “tax and
price” appear. That is, as the tax increases (decreases) so does the price. The white region
covering relatively larger than the others can be explained by the existence of highly
positive correlation between the variables tax and price. In other words it is important
to interpret in detail the correlation coefficient in this region. However, an analogous
interpretation will not be possible for the other regions in the dependence map. It is
shown in color light grey where there is no dependence between tax and price. Further,
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while tax takes moderate values, price takes moderate values at the same time. Thus,
we may conclude that the amount of increase or decrease in tax is not affected by price.
Both of the dependence graphs also show that the Pearson correlation coefficient is not

suitable to explore the complex dependence structure between tax and price.
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Fig.1-a. Scatter plot for Example 1

Fig.1-b. Chi-plot for Example 1
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Fig.1-c. Local dependence map for Example 1

Example 2. In Fig.2 we investigate the dependence structure between X and Y
which are generated by bivariate normal variables with correlation coefficient is -0.10
that is too small. Scatter plots and chi-plots coincide with each other. Scatter plot does
not have a pattern, this means that there is no association between the variables. Also
the points on the chi-plot are appropriately distributed along the lines, which mean that
there is no association between the variables too. The dependence map is particularly
informative here. The overall correlation between X and Y is p = -0.10 and this implies
weak negative linear dependence. Two main areas of data points are deemed to have zero
and negative local dependence. Negative dependence region colored dark grey occur
for moderato values of X and large values of Y. Although the correlation coefficient is
greater in magnitude, the region negatively correlated is smaller. Moreover, for large and
small values of Y one cannot expect local dependence in any values of X, implying zero
local dependence.
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Scatterplot of Y vs X
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Fig.2-b. Chi-plot for Example 2

Fig.2-c. Local dependence map for Example 2
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5. Conclusion

Scalar dependence measures such as correlation coefficient can be important part for
social science studies. But these measures cannot be adequate to summarize complex
dependence structure. The dependence between a pair of variables can be numerous with
potentially surprising aspects. For bivariate data sets the dependence structure can not
only be measured globally, but the dependence structure can also be analyzed locally.

In previous sections two methods for local analysis of dependence were presented and
illustrated with real and simulated data examples. The first method, the Chi-plot, is simple
to calculate and is well suited to recognize dependence in the tails of the distribution. The
second method, new local dependence map, although is quite difficult to calculate the
regions on it can be indicated for the dependencies which are easy to interpret.

Note: To construct the chi-plots, the Java program written by Z. F. Eren and C. Kinact
is used. On the other hand, in order to plot local dependence map, we use a Visual Basic
code in MS Excel for applying permutation test to our data which was written by (Orug
and Ucer, 2009).
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