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An Inequality of Fejer-Riesz Type

Yiiksel SOYKAN *

Abstract

In this paper, we obtain an extension of an integral inequality of Fejer-Riesz type.

Key words: Hardy Spaces, Inequalities.

Ozet
Bu calismada Fejer-Riesz tipinde bir integral esitsizliginin bir genellemesini elde edecegiz.
Anahtar Kelimeler: Hardy Uzaylari, Esitsizlikler.

1. INTRODUCTION

Throughout let A be the open unit disk and let OA be the boundary of A.
For 1< p<o, H”(A) is the set of all functions f analytic on A such that

giir}i [[ree™| do <o,

||f||p :{i LZ”‘f(eiﬁ)‘p d@} P =lim{i f”‘f(rem)‘p d@} p

defines a complete norm on H”(A). In the case of p=2, H*(A) is the

. © . 00 2 .
class of power series zn_oanz" with Zn_o|an| <oo which means

{a,}” €. In this case, for feH’(A) the norm is given by

n=0

7, ={%

a

n

1/2
2} . For more information on this spaces see [1 and 3].
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An Inequality of Fejer-Riesz Type

The following interesting inequality is given in [1, page 46].
LEMMA 1.1 (Fejer-Riesz Inequality). If /e H”(A) (1< p <o), then the

integral of | f (x)|p along the segment —1 < x <1 converges, and

| 1 @7 0P 27 PPN
L|f(x)|pde5L ViGe d@sL 1" de.
We shall prove an extension for p =2, below.
THEOREM 1.2 Let y be a circular arc (or a straight-line segment)
satisfying ¥ — A. Then for every f e H*(A),

1 1
E J;|f(Z)|2 |dZ| < ||f||i{2(A) = E J;A|f(z)|2 |dZ| (1.1)

where |dz| denote the arclength measure.

Let R and C denote the real line and the complex plane respectively.
Suppose D'c C =C U is a simply connected domain. Then there is a
canonical Hilbert Space E°(D') of analytic functions on D'. These spaces

are discussed in detail in chapter 10 of [1] and the precise definition will be
recalled in the next section; so these spaces will be taken for granted for the
moment. The following is an immediate consequence of above theorem.

COROLLARY 1.3 Suppose that D is a disc or a codisc or a half-plane and
y'c D be a circular arc (or a straight line) then for every g € E*(D),

1 1
- Lle@l ll<lelio oy =5 - [ e 1o

where 0D denote the boundary of D.

2. PRELIMINARIES

Let D be a simply connected domain in C and let ¢ be a Riemann
mapping function for D, that is, a conformal map of D onto A. An
analytic function g on D is said to be of class E*(D) if there exists a

function f € H*(A) such that
2(2)= f(p(2)p'(2)* (zeD)

is a branch of the square root of ¢'. We define

N |—

!

where ¢
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||g|| EX(D) = || I || Q) Thus, by construction, £°(D) is a Hilbert space with
<g13g2>E2(D) = <f15f2>H2(A)
where g;(z) = fi((p(z))(p'(z)%, (i=1,2) and the map U, : H*(A) — E*(D)
given by
U, f(2)=f (@29 () (f e H (A),ze D)

is an isometric bijection. If 0D is a rectifiable Jordan curve then the same
formula

V(=1 (@29 (2)* (f e }(08).z D)
defines an isometric bijection ¥, of L’(6A) onto L*(6D), the L’ space of
normalized arc length measure on 0D . The inverse
V, =V, [}(6D)— L*(0A)
of V, is given by
V,g(w) = gy’ > (g F(@D),wedAy =¢™).

We recall some definition and remark.

REMARK 2.1 Suppose £ is a function on an interval / inR and a,be!.
If (logf)">0 we say that f is log-convex. Then we have

i) if f islog-convex then f((1-A)a+Ab)< f(a)"™ f(b) (0<A<])
ii) 7 is log-convex if and only if (f')* < ff".

REMARK 2.2 Suppose that G € I’ (R). The Fourier Transform of G is the

function G given by
A 1 .
Gx)=— | Gm)e™du
(0 =2-[ G
and G is given by
1 . ,
Gu)=—1| G(x)e™dx.
=—-[ 6w
The following equality
A 2
[ o) du={" ‘G(x)‘ dx
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(i.e. ||G||2 =“é“2) is called Parsevals identity. If Ge L’(R) we have the
equality

2
G [ Gaedu dx.

>
25[1

(A proof may be found in Rudin [4, page 189].
3. MAIN RESULT

In this section we shall prove the theorem which is mentioned in the
introduction.
Proof of Theorem 1.2:
1

When f e H*(A), we shall write /, = g J:A|f(z)|2 |dz|.
72' 0.

Special cases;
1) The case y < OA is trivial.

i1) Suppose that y = {z : |z| = r} so that z=re” and |dz| =rdf (see Figure
1).

Figure 1

For f e H*(A), since
f(Z) = ianz" (a,, c 62) and ‘f(reig)‘z _ iianar,wmei(nfm)@
n=0 1#=0 m=0
we obtain

I, = i fﬂ‘f(reig)‘zrdﬁ = i fﬂggan ar“’”e"("’m)grd@
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® 1 o
z an aml"’HmV J: et(n—m)ﬁde
m=0 ”

2r
2 2n+l C 2 2
<3 =11
i) Let » be a full circle in A such that y "OA = and suppose that

1M 1M

a

n

an

3
(=4

@:A—> A is a conformal map and y'= {z:|z| = r} so that z=re",
v =@(y") (see Figure 2)

— - — =
/.-" E """-\.\ (;:‘ f_.-'"'-'-]?_l'l-_ -

.
s e s .

! B /! A
s ! ! )
' | ' 1
: ] l I
l‘\ y A l“\ ¥ /

. ¢ N i,

A A
. L S -
Figure 2

We know from section-2 that the formula

U,f(2)=f(p(2)e (2)" (feH*(A),zeD)
defines a unitary operator U, of H’(A) onto E*(A)=H’(A) so that
HU{/}H = ||f|| Then we have

1 2
1= |11l |
— [ (@) o e
_ i [ v f () e
<fu, s byecaseii)

=111

(iv) Suppose that O<a<l and y={z:[z-a|=(1-a)} so that
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z=a+(1-a)e” and 7/n:{zz|z—a|= " (l—a)} SO
n+l

z=a+—2_(1-a)e” (see Figure 3).
n+1

Figure 3
For each n, by case iii), it follows that

1
2 L @r el =11
If feH*(A)is fixed, we have

1 2 1
— [lr@ Jez|= - [ g@©)do

where
g0 =|f(a+(1-a)e"[ (1-a)

and
1 2 B L 2
1@l =] e, @do<|f]

where

2

g,(0)=

f(a+i(l—a)e'€
n+l

" (1-a).
n+l1

Note that ( gn) c L'(-z,x) and g, >0 a.e. Thus by Fatou's lemma, it

follows that

1 2 1 1 )
S [lr@fld =~ [ e@)do=——[ iimg,@)d0

1
<lim— 0)do
lim—— [ ¢,(0)
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2

<lim /" =/

(here lim means liminf ). That is, we obtain

n—0

1 2 2

L[t
v) Suppose that  has distinct end points on 0A. Using a conformal map as
above we can assume these end points are +1. @(w)=tanh(w) maps the

infinite strip-——<v< 7 (w=u+iv)in the w-plane onto the interior of

the unit disc in the z -plane (see Figure 4).

i fan ¥, @ {w) = tanhfw) 1 45
%

Ho

1 D 2

i
B

4

Figure 4

Suppose that D ={z e[l : |Im(w)| < %} . Then we obtain

E*(D)= {g :g(w) = f(tanh w)sec h(w) = i a, tanh” (w)sec h(w)}
where f e H*(A) and
1 2 1 2 :
l=o- jy £ (2)[ |z - L w)| f (tanh(w))| \sech (w)“dw|

(Here we used the substitution z = tanh w and the fact dz =sec h*(w)dw,
w=x+iy, dw=dx), so that

I = i Eo|f(tanh(x + iy))|2 ‘sec n(x+ i)’)‘ dx
1 .
= [ oG infax

ZLf h(x+iy)'dx  (say h=Uf e E*(D))  (3.1)
2 v
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where U : H*(A) — E*(D)
Uf (W) = f (@(w))@'(w)* = £ (tanh w)sec h(w)

is a unitary operator as in the case iii) so that ||Uf || = || f || . We shall now

show that if # € E*(D) and —%<y<%, then

2
E*(D)

1
:Z[‘;

Note that if X = {h h(z)=3" a, tanh" (w)sec h(w)} _then i) X is a dense

1 .
py fm|h(x + zy)|2dx < ||h

2 2
1 /3
dx+gﬁo‘h(x—zz) dx (32)

T
h(x+i—
(x+i7)

subset of E*(D) and ii) each heX is analytic for w satisfying
|Im(w)| <%, in fact, this is true for w satisfying |Im(w)| <%. Suppose that
he X .By(3.1)
1 2 V4 V4
I =— | |h(x+iy)|dx, ——<y<—
T2z -[:O| ( y)| 4 4 4

so, by (3.2) we need to show that / <7 +7 . We will show that
4 4

(Iy ')2 <I1,". For heX there is a gel’(R) such that

h(z)= f g(u)e™du (this is the Paley-Wiener theorem, see [1, page 196

and 2, page 132]). If we set G(u) =g(u)e™™, —% <y <% then the Fourier

Transform G of G is given by é(x) =2L f G(u)e™du, but also we have
72' 00

G(u) :i Eoé(x)e’ix”dx and “G“Z =||G||2 . For —%< ¥ <% we obtain

2

2
I, :ifw ﬁg(u)e“”’”“du dx:—zlﬁ E‘Ecg(u)ey”eix“du dx
1 Al 1 2 1 “yul?
“5all =510 =5 Llewe]d

and consequently

1 2y
1= [ el e du
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I '= 1 f —2u|g(u)|ze’2y“du
Y 2m e

1,"= i Eo—4u2 |g(u)|2e’2y”du

In view of above equalities, it follows by Schwarz Inequality that
2 .
(7, <1,0,". Thus I, is

(1-2) y4
I(l—/l)a+/1b < Ia ]b

log-convex. So from Remark 2.1,

(0<A<1). Note that if «,f>0 and o+ =1 and
x,y >0 then x*y” <x+y. Hence for he X

T T
L= ](1—/1)%/1(%] (T AR Z)
1
=5 J"; |h(x+ip)de <12 +1°,

4 4
<I +I _.

(3.3)
4 4
We shall finish the proof of this case by showing that the inequality

1 N 2 - Vs
[y:gjjo|h(x+ly)| dXS”h £2(D) (T<y<z)
is true for all # e E*(D). Now suppose that

hy(z)= anzoan tanh"(z)sech(z); thatis, h, € X, for N=0,1,2,... and
h(z)=Y" a,tanh"(z)sech(z),ie., he E*(D). Then

h, >h  (means LD|hN (2) = h(z)||dz| - 0).
From (3.3), the following inequality

1
- [ [y e+ i) e < [y
holds. By Fatou's Lemma

2
E*(D)

[ tim|i e+ i) e < lim [ [ o+ i) el
SO

I,= i [ e+ iy e = i [ tim|n, (x+iy)f dx

1 .
<lim [ |ay e+ i) ax
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2

E*(D) = ” ;

= li—m”hN E*(D)"

Hence for all # € E*(D), we have the inequality

1
- [ |G+ i) de <

as required. We now verified (1.1) in all cases.

2
E*(D)
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