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Abstract- In this paper, we introduce a new method for 
steganalysis of grey-scale images. First, we analyzed the effect 
of various steganographic processes on the statistical properties 
of the image. So we extracted the optimal features from the 
images, which have high ability in make differentiated between 
two groups of normal and stego images. In this method, high 
order statistics in discrete wavelet transform (DWT) 
coefficients are used. Then the pre-processing of principal 
component analysis (PCA) is done on extracted features. The 
support vector machines (SVM) is used to classify image 
segments into stego or non-stego cases. The proposed method 
with comprehensive look into current steganographic 
techniques in DWT domain is able to detect the presence of 
hidden messages with more than 90% accuracy in different 
embedded rates. 

Keywords- Steganalysis, statistics features, principal 

component analysis (PCA), support vector machines (SVM). 

 

I.  INTRODUCTION  

The aim of steganography is to pass hidden information 

without any suspicion to the existence of the message. Many 

steganographic techniques are proposed in papers. These 

techniques embed the data in spatial domain, DCT (Discrete 

Cosine Transform), DFT (Discrete Fourier Transform) and 

DWT (Discrete Wavelet Transform). While the aim of 

steganalysis is to detect and estimate hidden information from 

observed data with little or no knowledge about the 

steganography algorithm and parameters [5]. None of the 

existing steganographic algorithms achieves perfect security 

and in principle, all are detectable. 

In reference [11], can be considered an overview of the 

types of public steganalysis methods. Some of the most 

important of them are: the use of Image Quality Matrices 

(IQM), Higher Order Moments of Wavelet Sub-band 

Coefficients, Moments of Wavelet Characteristic Function and 

Histogram Characteristic Function Centre of Mass (HCF-

COM). In [8], a steganalysis algorithm based on statistical 

moments of wavelet characteristic function proposed. The 

authors extract the first and second statistical moments of the 

characteristic functions from all the sub-bands to form an 18 

dimensional feature vector for steganalysis and use Bayes 

classifier for classification. Ref. [9] proposed two active 

steganalysis schemes for spread spectrum image 

steganography.  

In spatial domain, LSB method has long been used by 

steganographers, because the eye cannot detect the very small 

perturbations. In ref. [8], Fridrich and long proposed an 

algorithm for steganalysis of the LSB embedding in 24-bit 

colour images. This method is based on statistical analysis of 

the image colours in RGB. Ref. [9] have proposed a new 

method for detection of LSB data hiding based on Gray Level 

Co.ocurrence Matrix (GLCM).  

In this paper, we proposed the new steganalysis method as 

the feature-based classification to devise a blind detector 

specific to grey-scale images. The most important advantage 

is calculating the GLCM features in the DWT domain that it 

caused more accuracy and lower error. 
The rest of this paper is organized as follows. In section 2, 

we introduce GLCM features and analyze the effect of various 
steganographic processes on the statistical properties of the 
image. Section 3 describes the details for proposed method. 
Section 4 gives experimental results. This paper concludes in 
section 5. 

II. GLCM FEATURES 

This section presents the features we selected to use for 

classification. Choosing discriminating and independent 

features is a key to detecting algorithm being successful in 

classification. The effect of various steganographic methods 

can be observed on first and second order statistics. The effect 

of steganography on first order statistics is softening the 

histogram. Also, the effect of steganography on second order 

statistics can be observed as reducing the spatial domain 

correlation or transform domain (DWT, DCT, and DFT).  

The co-occurrence matrix is essentially a two-dimensional 

histogram of the number of times that pairs of intensity values 

occur in a given spatial relationship [1]. An element P of a 

GLCM is defined as the joint probability that the gray levels i 

and j occur separated by distance d and along direction  in an 

image. These are properties of pairs of pixel values. The 

various co-occurrence features such as contrast, energy, 
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entropy, local homogeneity, maximum probability, 

dissimilarity, cluster shade, cluster prominence, variance, 

inverse difference moment, Information Measures of 

Correlation, Autocorrelation, Angular Second Moment and etc 

are calculated depending on a series of second order statistics 

computed using the GLCM. These features will be computed 

in the DWT domain. The co-occurrence matrix describes the 

probability distribution of pairs of neighboring DWT 

coefficients. 

The discrete wavelet transform (DWT) highlights 

structural, geometrical and directional features of objects in an 

image. The Algorithm is based on the fact that the behavior of 

the carrier image under a smoothing filter is different from the 

behavior of the stego-image under the same filter [7].  

These features obtained from references [1-3]. Where 

assume ( , )P i j  to be the ( , )i j th entry in a normalized 

GLCM. The mean and standard deviations for the rows and 

columns of the matrix are: 
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Cluster shade and cluster prominence can be modified to a 

sum histogram problem. 

10) Maximum Probability: 
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 is the mean value of P. 

12) Inverse Difference Moment [3]: 
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N is the number of gray levels used. 

14) Sum Variance [1]: 
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Where HX and HY are entropies of xP and yP . 

 

III. PROPOSED METHOD 

In this paper, we proposed an algorithm for targeted 

steganalysis that capable to detect specific steganographic 

algorithms. The algorithms which embed the data in spatial 

domain such as lsb encoding, lsb matching and methods in ref. 

[10-12]. We found that even embedding in spatial domain, 

changes the correlation between wavelet coefficients. With 

this fact, we have analyzed the sub-bands of DWT and extract 

the features of classifier. 

The proposed method is an algorithm for steganalysis as 

block wise where each block has been classified 

independently. So each image is divided into 88 blocks and 

for each sub-image the DWT were applied. The Discrete 

Wavelet Transform (DWT) of images produces a non-

redundant image representation which provides better spatial 

and spectral localization of image formation. The sub-image is 

decomposed using a 1-level two-dimensional DWT to obtain 

four sub-bands as cA, cH, cV and cD. In our method, we 

select the diagonal detail coefficient (cD) for obtaining the 

necessary features. The difference between the DWT 

coefficients of each block and the same stego-block reveals 

the existence of hidden information. Through cD, cH and cV, 

the diagonal detail coefficient is suitable for steganalysis of 

steganography methods in spatial domain such as LSB or 

proposed steganography method in ref. [10-12].  

Every test sub-image’s cD was filtered by Gaussian kernel. 

Then from the resulting filtered cD, some quality features 

were calculated using the GLCM.  

These effective features are proposed in section 2. Feature 

selection is an important issue in classification. We have 

applied PCA to improve the detection accuracy of SVM 

classifier and reduced the false positive rate.  

Principal Component Analysis (PCA) is a mathematical 

procedure that uses an orthogonal transformation to convert a 

set of observations of possibly correlated variables into a set 

of values of uncorrelated variables called principal 

components. We used the PCA, to 20 features be reduced to 

10 features.  

 

 

 
 
 

 

Fig. 1.   Block diagram of proposed method 

 
 

Fig. 3.   Block diagram of proposed algorithm 
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  For classification, Support Vector Machine (SVM) was 

selected. One of the reasons for the popularity of SVMs is that 

they are considered resistant to the curse of dimensionality 

and to uninformative features [13]. SVM is a powerful tool for 

pattern classification. With introduction of kernel ticks in 

SVM, it has become a very popular in machine learning 

community [4]. Fig. 1 shows the block diagram of 

steganalysis method. This steganalysis technique can detect 

the existence of hidden massage in images that are embedded 

data with various algorithms in spatial. Each algorithm that 

changes the pixel values in spatial domain can be detected 

with proposed method. Some of these algorithms are ref. [10-

12]. 
 

IV. EXPRIMENTAL RESULTS 

  To evaluate the algorithm, we first created a set of stego 

images using embedding algorithms in ref. [10-12] in the 

spatial domain using different relative massage length. In this 

section, we demonstrate the detestability of proposed method 

using a classifier based on the feature set. Statistical 

delectability is evaluated by support vector machine (SVM) 

with Gaussian kernel. We used a data base of 1000 grey-scale 

images from stego and non-stego images with 512 X 512 size. 

The database was divided into 500 training images and 500 

testing images. We created stego images from normal images 

and obtained training and testing images. Table I shows the 

result of classification for steganography algorithms. The 

result demonstrates that our method can achieve good 

distinction between stego and non-stego images. For all the 

steganography algorithms, the detection is about 97%. 

 

TABLE I 
THE RESULT OF STEGANALYSIS  

Steganography            False Reject       False Accept              Correct 
Methods                              Rate                           Rate                         Detection Rate 

LSB                                  0.6                   0.8                              98.6 

Method in [10]                 0.3                     0.5                            99.2 

Method in [11]                 0.9                    1.1                             98 

Method in [12]                 1.1                    1.4                             97.5 

 

V. CONCLUSIONS 

  By studying the steganography algorithms, we also discover 

important consequences that influence the development and 

future design of steganalysis. By realizing the limits and by 

improving the practical stegosystems, we can design the more 

secure steganography algorithms. In this paper, we developed 

a new targeted steganalysis method based on GLCM features 

for grey-scale images. Each feature is calculated in DWT 

coefficients. We have applied the detection to several current 

steganographic schemes. The experimental results were 

carefully evaluated and we concluded that secure 

steganographic schemes must preserve as many statistics of 

DWT coefficients as possible. 
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