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Abstract- During an earthquake, the motion of the ground 
spatially changes, in both amplitude and phase. The spatial 
variation of seismic ground motions has an important effect on 
the response of large structures such as bridges and dams. To 
be able to simulate seismic ground motions which vary in 
space, a representing spatial variability model is required. Data 
collected from closely spaced arrays of seismographs such as 
SMART-1 array in Loting, Taiwan have enabled researchers to 
produce useful spatial variability models to model spatial 
excitation.  

In this paper a simulation technique
 
for the generation of 

artificial spatially variable seismic ground motions
 

was 
presented using Arterial Neural Networks (ANNs). A 
simplified neural network based procedure was used to 
generate artificial spatial varying accelerograms from the 
response spectrum of an earthquake.  
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I. INTRODUCTION 

In the seismic response analysis of structures it is assumed 
that the supports to be subjected to uniform base excitation. 
This assumption may not be realistic for structures especially 
whose horizontal dimensions are comparable to the wavelength 
of foundation ground motion. The earthquake waves travelling 
through the ground thus enforce differential motion on 
structural supports. This is due to the fact that the earthquake 
waves received by different structural supports are not uniform 
and change in amplitude and frequency away from their source. 
A great deal of research has been directed at studying the 
spatial variation of ground motion [1,2]. The main efforts have 
been concentrated on defining an appropriate ground motion 
attenuation model to model spatially varying effects. 

The importance of spatially varying support excitation on 
structural response has long been realised. Harichandran and 
Vanmark [1] carried out a preliminary study on the recurrence 
of earthquakes in SMART-1 array. They considered the ground 
motion as a random process and obtained a spectral equation to 
be used in spectral analysis of multi-support excitation 
problems. As a practical example, Harichandran and Wang [3] 

investigated the effects of a wave passing through the supports 
of a simply supported beam. They used a semi-experimental 
random model and conducted probabilistic analyses of that 
problem. Perotti [4] used the theory of random vibration to 
study the effects of non-uniform ground excitation on large 
structures. Nazmy and Abdel-ghaffar [5] carried out dynamic 
analysis of a cable-stayed bridge under non-uniform ground 
excitation. They, however, applied four different 
accelerograms of El-Centro earthquake, recorded in different 
locations to the different piers of the bridge. In the same year, 
Der Kuireghian and Neuenhofer [6] presented a new spectral 
approach to analyse MDOF systems to different support 
excitations. In their method, they included variations of the 
ground motion due to wave passage, loss of coherency with 
distance and variation of local soil conditions. Kahan et al [7] 
extended the spectral analysis carried out by Der Kiureghian 
and Neuenhofer and investigated the effects of support distance 
on the response of bridges. Seismic response of large structures 
such as bridge and dam subjected to asynchronous and non-
uniform support excitation investigated by Maheri and 
Ghaffarzadeh [8]. Their results showed that asynchrony and 
non-uniformity in ground motion may, in some cases, amplify 
the seismic response and therefore should be considered in the 
analysis.  

Simulation techniques for generating random processes 
have enabled researches to generate such random processes as 
seismic events. Shinozuka used the concept of representation 
of Gaussian random processes to generate simulations of 
random process [9].  He based his simulations on the spectral 
representation method in which simulations of zero mean, 
Gaussian random processes are obtained by adding up a large 
number of weighted trigonometric functions. The 
computational time required for simulation was however 
inhibiting.  Yang [10] reduced the computational time for 
simulation by introducing the Fast Fourier Transform (FFT) 
technique. Shinozuka later adopted Yang's FFT technique to 
further his work on simulation of multi-variate and multi-
dimensional random fields [11].  The simulations generated by 
FFT are however not ergodic in the mean and to obtain 
ergodicity the value of the field spectrum at the origin should 
be assumed zero.  Zerva [12] overcame this problem by 
combining Shinozuka's original approach of using 
trigonometric series with FFT. 
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Data collected from closely spaced arrays of seismographs 
such as SMART-1 array in Loting, Taiwan have enabled 
researchers to study spatial variability phenomenon [2,13,14]. 
The SMART-1 array consisted of 37 force-balanced triaxial 
accelerometers arranged on three concentric circles (the inner 
denoted by I, the middle by M, and the outer by O). Twelve 
equi-spaced stations, numbered 1-12, were located on each 
ring, and station C00 was located at the center of the array.  

Artificial neural network models have been widely applied 
to various relevant engineering areas. Several authors have 
used ANN in the earthquake engineering. Ghaboussi and Lin 
[15] proposed a new method of generating artificial earthquake 
accelerograms using neural networks. Lee and Han [16] 
developed efficient neural-network-based models for the 
generation of artificial earthquake and response spectra. They 
constructed several ANN to predict Earthquake parameters of 
an area. 

According to powerful ability of the artificial neural 
networks to model engineering problems, in this article, a ANN 
based method was proposed to generate artificial spatially 
varying earthquake accelerograms. Pseudo response spectrum 
of earthquake events in SMART-1 array was used to simulate 
such accelerograms. 

 

II. ARTIFICIAL NEURAL NETWORK 

An Artificial neural network is a computational model that 
is loosely based on the neuron cell structure of the biological 
nervous system. The biological brain consists of billions of 
highly interconnected neurons forming a neural network. 
Human information processing depends on this connection 
system of nervous cells. Based on this advantage of 
information processing, neural networks can easily exploit the 
massively parallel local processing and distributed storage 
properties in the brain. The origin of neural networks dates 
back to the 1940s which McCulloch and Pitts and Hebb [17] 
researched networks of simple computing devices that could 
model neurological activity and learning within these networks, 
respectively.  

Neural networks are simply assemblage of human brain. 
They consist of some nodes or neurons interconnected with 
each other. Information propagates through connection and the 
strength of the transmitted information depends on the 
numerical weights which are assigned to the connections. Each 
neuron receives information along the incoming connection, 
performs some simple operations, such as calculating weighted 
sum of the incoming information and calculating an activation 
function, and sends information along its outgoing connections. 
The knowledge learned by a neural network is stored in its 
connection weights. The learning taking place, when a learning 
method is used to modify the connection weights in such a way 
that a given input pattern produces a given output pattern. The 
patterns used in training the neural network are called the 
training set. During the training, a neural network acquires the 
knowledge from the input-output pairs in the training set, and 
stores that knowledge in its connection weights. Figure 2 
shows a general configuration of a neural network.  

III. NEURAL NETWORK BASED METHOD FOR 

GENERATING EARTHQUAKE 

In this study, ANN was used to produce artificial 
earthquake accelerograms which spatially varied through 
traveling underneath a large structure such as bridge and dam. 
The generated accelerograms can be used for multiple support 
excitations analysis of this kind of structures. The proposed 
method based on producing earthquake accelerograms from a 
specified response spectrum. 

An ANN is constructed using accelerograms as output data 
set and corresponding pseudo-velocity response spectra as 
input information. Such a neural network will be trained with 
the response spectra and accelegrams of a number of actual 
earthquakes selected from SMART-1 array to produce spatially 
varying ground motion. Since in discretizing the earthquake 
accelegram a reasonable accuracy should be maintained, it is 
discretized with a large number of discrete values. 
Consequently, the resulting network will be very large and very 
difficult to train. To overcome this problem, another 
preprocessing neural network is used. The preprocessing neural 
network learns to reduce the size of input vector to enhance 
main neural network. Based on special characteristic of 
hierarchical neural network in lossless compressing and 
decompressing of information, the neural network architecture 
is assigned and prepared to compress accelerogram vectors.  

A. Replicator Neural Network 

The hierarchical neural network is a multilayer neural 
network which can reduce dimension of input data. A neural 
net architecture suitable for solving the data compression 
problem is shown in figure 1. This neural network is composed 
of a large input layer feeding into a small hidden layer, which 
then feeds into a large output layer. Due to replicating of input 
vector in the output layer of the neural network, it can refer to 
replicator neural network. 

As mentioned in previous section, the purpose of using 
replicator neural network is to compress and reduce the 
dimension of accelerogram vectors to use of them in next 
stage. 180 earthquake accelerograms collected from SMART-1 
array was considered as a training data set for the replicator 
neural network. Feed-forward back propagation method was 
employed to train the neural network.  

The trained replicator neural network was then tested by 
presenting new accelerograms of SMART-1 array as input and 
comparing them with the neural network replicated 
accelerograms. A typical comparison for one of the 
accelerograms from the testing set is shown in Figure 2. It can 
be seen that the replicator neural networks have learnt to 
generate an accelerogram which is very close to the input 
accelerogram. 

After successful training of replicator neural network, the 
connection weights were saved to use them to compress and 
decompress of the presenting accelerograms of the main neural 
network in coming stage. For this purpose the replicator neural 
network is split to compressing and decompressing half parts in 
which by propagating a accelerogram vector in first half, it 
compress and vice versa right. 
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Figure 1.  Demonstration of Replicator neural network architecture 

 
(a) 

 

 
(b) 

Figure 2.   Event recorded accelerogram at the station: (a) Sample input 

accelerogram for testing of replicator neural network, (b) Replicated 

accelerogram 

B.  Generalized Regression Neural Network for Spatially 

Varying Accelerograms Generation 

Generalized Regression Neural Network (GRNN) is a 
probabilistic neural network has been proposed by Specht [18]. 
GRNN has a radial basis layer and a special linear layer which 
powered it for function approximation and mapping problems. 
Figure 3 shows the schematic architecture of a GRNN. It 
approximates any arbitrary function between input and output 
vectors without any iterative training procedure as in back 
propagation method.   

In this study, GRNN has been employed to generate 
artificial accelerograms based on seismic response spectra. The 
accelerogram generator neural network is developed to learn to 
generate the accelerogram from the vector of the pseudo-
velocity response spectrum at discrete periods. To avoid of 
large size of neural network because of large dimension of 

accelerogarm vectors, generation was performed in two stages 
as shown in figure 4. Two neural networks were constructed to 
generate accelerograms. The first neural network is a GRNN 
and the second one is the second half part of the replicator 
neural network as trained previously.  

Input vector of the GRNN was composed of descritized 
pseudo-velocity response spectrum and distance in which the 
varying spatial accelerogarm is generated. The compressed 
representation of accelegorams which obtained from the first 
half part of replicator neural network was considered as output 
vector of the GRNN. The output vector of the GRNN was 
propagated to the second half part of trained replicator neural 
network.  

240 earthquake accelerogarms recorded from event 20, 25, 
39, 40, 43 and 45 at specified distance of SMART-1 Array, 
according to the distance of the rings, I,M and O with each 
other, were used to train the neural network. Each 
accelerogarm vector was compressed to a vector with the size 
of 80, using the replicator neural network as described, 
previously. Pseudo-velocity response spectrum of each 
acceleroram was also descritized at 80 sample period.     

 

Figure 3.  Schematic Diagram of a GRNN architecture 

 

 

Figure 4.  Artificial spatial varying accelerogram procedure  

 

Input layer of first neural network consists of 81 neurons, 
80 neurons for presenting pseudo-velocity response spectrum 
and one neuron for distance in which the varying spatial 
accelerogarm is generated. Output layer also consists of 80 
neurons to present compressed accelerogram vectors. The 
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GRNN was trained by 240 compressed accelerograms and their 
corresponding pseudo response spectra. As a sample input for 
the GRNN, the recorded accelerogram of event 25 at the center 
of the SMART-1 array in station C00 and its pseudo velocity 
spectrum were illustrated in figure 5.  

After training of the GRNN by propagating training data 
set, the network was tested for new data set. Results showed 
that the neural network has good generalizing power. To 
generate spatially varying accelerograms, a pseudo velocity 
spectrum and a distance in which generated accelerogram is 
desired, were presented to the neural network as input data. By 
propagating data in the neural network, the accelerogram in the 
specified distance was generated.  

Pseudo velocity spectrum of E-W component of event 25, 
recorded at the station I01 was considered with various 
distance of 300, 500, 1000 and 1500m as testing data set. 
Figure 6 shows the variation of the pseudo velocity of a system 
with single degree of freedom versus the period.  After running 
the neural network, the relating accelerorams were generated. 
The simulated accelerorams have been shown in figure 7. The 
results are comparable with the recorded accelerograms in the 
adjacent stations with similar distance.  It can be seen that by 
increasing distance from the center of the SMART-1 array,  
accelerograms modify and acceleration values tend to diminish. 
The time shifting of peak acceleration in the accelerograms can 
be also observed in the results.   

 

 

(a) 

             

(b) 

Figure 5.  Sample input for the GRNN: a) N-S component Accelerogram of 

event 25 in station C00, b) 5% damping pseudo velocity spectrum 

 

Figure 6.  Input pseudo velocity of E-W component of event 25 at station I01 

for generation of accelerograms. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.  Testing of the GRNN for new distance (E-W component of event 

25 at station I01); Simulated for distance of  (a) 300 m, (b) 500 m, (c) 1000 m 
and (d) 1500 m 
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IV. CONCLUSION 

Spatial variation of seismic ground motion is an important 
characteristic of earthquakes should be considered in dynamic 
analysis of large structures such as dams and bridges. To 
investigate the effect of this phenomenon on the seismic 
response of such structures, the spatially varying effect of 
earthquakes can be modeled by some proposed complicated 
models which exist in the literature. In this study, a simplified 
ANN based method was proposed to generate spatially varying 
earthquake accelerograms. Such accelograms can be employed 
in time history dynamic analysis of the structures subjected to 
multiple support excitations. Two neural networks were 
developed. A feed-forward back propagation neural network 
with hierarchal architecture was used to replicate its input 
vector into output vector. This pre-processing neural network 
was utilized to reduce the size of accelerogram vectors and 
enhance the efficiency of main neural network. The main 
generalized regression neural network was used to generate 
accelerograms from pseudo velocity spectra. The results can be 
summarized as the follows.  

1. Compressing of accelerogram vectors reduced the 
dimension of the GRNN, thus learning of the GRNN for 
training data set improved.   

2. Preliminary investigation on feed-forward back 
propagation neural network and GRNN showed that the GRNN 
is more efficient in training time and learning of the data than 
feed-forward back propagation neural network. 

3. Spatial variation of ground motion can be modeled by 
using SMART-1 array earthquakes recorded at various points 
of the array as training data for the neural network. 

4. Testing of the GRNN for new data set and distance 
shows that the developing neural network has good 
generalization results. 

5. Spatial variation of ground motion can be seen in the 
simulated accelerograms.  By increasing distance, acceleration 
values in the accelerograms tend to decrease and a time shifting 
of peak acceleration is observed.       
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