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Abstract- In this paper, turbojet engine in ideal condition will 
be optimized by multi target genetic algorithm. The target 
functions are specific thrust (ST), specific fuel consumption 
(SFC) and thermal efficiency (ηt) that once will simultaneously 
be optimized by two by two way and the results will be 
revealed in the Pareto curves. For the second time these three 
objective functions will be optimized at the same time. At the 
end the findings of two by two ways will be compared with the 
results of three objective functions.   

Design variables are considered as Mach number and total 
compressor pressure ratio. The significant relation between 
objective functions is introduced according to Pareto points. 
There is no doubt that these functions without using methods 
are not considerable. 

Keywords- Genetic Algorithm, Pareto, Multi target 

optimization, Crossover, Mutation, Turbojet engine. 

 

I. INTRODUCTION 

Simulation and optimization models can provide solutions 
to many problems in the field of operations research. Although 
simulation models are based on trial and test methods followed 
by engineering judgment, final solutions may not be optimal.  

In contrast, optimization models can yield optimal/near-
optimal solutions by searching a part or an entire decision 
space. Different single objective optimization methods such as 
linear (LP), nonlinear (NLP) and dynamic programming (DP) 
are capable to move toward optimal solutions. However, 
difficulties in determining optimal solutions, especially in some 
discrete or nonlinear problems, as well as the curse of 
dimensionality in solving the large-scale problems, are 
disadvantages of those optimization methods.  

Evolutionary algorithms are potential candidates to 
determine optimal/near-optimal solutions in the 
aforementioned problems.  

In these types of algorithms, random decision variables are 
produced as input data for a simulation model. Output data 
from the simulation model can be used as input data for an 
optimization model. In such a process, newly-generated 
decision variables, based on previously calculated ones, can be 
improved. This process continues up to the maximum number 

of iterations for determining the best solution. Genetic 
algorithm (GA), particle swarm optimization (PSO), ant colony 
optimization (ACO), and simulated annealing (SA) are 
evolutionary algorithms that have been developed for solving 
optimization problems. Multi-objective problems are another 
type of operations research problems which include a vector of 
objectives instead of a single objective. The main goal of multi 
objective optimization techniques is to determine a set of 
optimal solutions, especially when objectives are conflicting.  

Several computational intelligence based approaches, 
namely, evolutionary computation, swarm intelligence and 
artificial immune systems have been used for solving MOO 
problems. PSO and ant colony optimization methods belong to 
the swarm intelligence domain of computational intelligence. 
The population based nature of evolutionary techniques 
captures the different compromising solutions in the population 
simultaneously at each iteration. This fact has led to the 
considerable growth in multi-objective evolutionary algorithms 
(MOEA), from VEGA in [13], to the most recent techniques 
like NSGA-II [4], SPEA-2 [16] and PESA-II [3]. A population 
based swarm intelligence heuristic called Particle Swarm 
Optimization (PSO) was proposed in 1995 [9]. This is inspired 
by the flocking behavior of birds, which is very simple to 
simulate and has been found to be quite efficient in handling 
the single objective optimization (SOO) problems [5],[14]. The 
simplicity and efficiency of PSO motivated researchers to 
apply it to the MOO problems since 2002. Some of these 
techniques can be found in [1], [2], [6], [7], [10], [11], [12], 
[15]. 

In this study, design variables such as inlet Mach number 
and total compressor pressure ratio are considered. Selective 
multi target in ideal subsonic turbo jet included specific thrust, 
specific fuel consumption and thermal efficiency and with 
considering design variables will be optimized two by two. The 
results will be revealed by Pareto curves. Our goal is 
decreasing specific fuel consumption and increasing specific 
thrust and thermal efficiency. 

 

II. TURBO JET THERMODYNAMIC MODEL 

Operating fuel in turbo jet engine is air which by changing 
in kinetic energy in inlet comparing with outlet can create 
thrust.  
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Ideal turbojet engine equations are shown in Appendix II 
[8]. Inlet parameters in this cycle included flight Mach number 
(M0), inlet air temperature (T0, K), temperature coefficient 
(γ), heating value (hpr, kj.kg

-1
), burner exit total temperature 

(Tt4,K), total compressor pressure ratio (πc ).  

Outlet parameters involves specific thrust (ST, N.kg
-1

.S
-1

 ), 
fuel/air ratio (f), thrust specific fuel consumption 
(TSFC, kg.S

-1
.N

-1
 ) and thermal efficiency ( ηt).   

In this study hpr=48000 kj.kg-1, γ=1.4, Tt4=1666K, 
T0=216.6K. Flight Mach number 0<M0≤1 and total compressor 
pressure ratio 1≤πc≤40 are considered as design variables [8]. 

. 

III. MULTI-OBJECTIVE OPTIMIZATION  

A general minimization problem of M objectives can be 

mathematically stated as: given: ],...,,[ 21 dxxxx 


  

Where d is the dimensional of the decision variable space, 
Minimize: 

)()( xfxf i




 
Mi ,...,1
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According to J number condition:  

0)( xg j


 

Jj ,...,1
                   (2) 

And K number of equal condition: 

0)( xhk


 

Kk ,...,1
                  (3) 

The MOO problem then reduces to finding an x


 such that 

)(xf


 is optimized. Since the notion of an optimum solution 

in MOO is different compared to the SOO, the concept of 
Pareto dominance is used for the evaluation of the solutions. 
This concept formulated by Vilfredo Pareto is defined as [7]: 

A vector ),...,,( 21 Muuuu 


 is said to dominate a vector

),...,,( 21 Mvvvv 


, (denoted by vu


 ), for a multi 

objective minimization problem, if and only if  

iiii vuMivuMii  :},...,1{},,...,{  (4) 

where M is the dimension of the objective space. 

A solution Uu 


, where U is the universe, is said to be 

Pareto Optimal if and only if there exists no other solution

Uv 


, such that u


 is dominated by v


. Such solutions )(u


 

are called non-dominated solutions. The set of all such non-
dominated solutions constitutes the Pareto-Optimal Set or non-
dominated set. 

A. Multi-Objective Particle Swarm Optimization (MOPSO) 

Algorithm 

The PSO algorithm is an optimization technique based on a 
bird migration pattern. In the real world, the movement of birds 
towards food can display a regular system in which each bird 
improves its position in the time dimension. In the PSO 
algorithm, each bird can be presented as a particle (single 
solution) and a set of the birds is identified as a swarm (set of 
solutions). Thus, in an optimization problem, the position of 

the ith particle )( ix  can be represented by a D-dimensional 

vector: 

Nixxxx iDiii ,...1],...,,[ 21    (5) 

where D= number of decision variables and N= swarm size. 
Moreover, the best bird (with the smallest distance from the 
food) is called the global best (Gbest), and the best position of 
a bird ever tried toward the food is the particle best (Pbest). 
Steps of the PSO algorithm are as follows: 

In the first step, random solutions )( ix with a normal 

distribution of decision variables are produced. In the second 
step, those solutions are used in the simulation model as input 
data. The objective function for each particle (solution) is then 
calculated and stored in the memory of the algorithm. For the 
next step, Pbest and Gbest are assigned with respect to the best 
position of particles and swarm so far discovered, respectively. 
In the fourth step, the velocity is calculated as: 

1

1 1 2 2( . . ( ) ( ))

1, 2,... , 1, 2,... (6)
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             (7) 

In which:  
1t

idv = velocity of ith particle for dth dimension 

in (t + 1)th iteration. 

 = constriction factor which is a fixed pre-specified value 

and controls the velocity of particles in the decision variables 
space. 

tw = inertia weight parameter in tth iteration which is 

calculated by Eq. (7). 

This parameter starts from the maximum value )( Maxw  in 

the first iteration to the minimum value in the last iteration

)( Maxiter . That is, at the beginning of search process, the 

effect of velocity )( t

idv is more than that in later iterations. 1c

=cognitive parameter; 2c =social parameter ( 1c and 2c  assign 

the proportion of Pbest and Gbest in the velocity); 
tr1  and 

tr2  

= uniformly distributed random numbers in [0, 1] in the tth 
iteration. Hence, each particle moves in the decision space by a 

velocity vector with two elements. Thus, 
t

idPbest = best 

position of the ith particle for the dth dimension in the tth 

iteration and 
t

dGbest = best position of the swarm for the dth 

dimension in the tth iteration. 

At the next step, resulting velocities are controlled using 

lower )( minw  and upper )( maxw  bounds of velocity: 

max

1

min vvv t

id  
 (8) 

Finally, the particle position is calculated by using Eq. (9): 
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11   t

id

t

id

t

id vxx  (9) 

The resulting particle position is used as the new input for 
the simulation model in the second step and new objective 
functions are again calculated. This process continues up to the 
maximum number of iterations. The aforementioned PSO 
algorithm has a continuous search mechanism to move toward 
an optimal point. The movement toward an optimal point in the 
single-objective PSO (SOPSO) algorithm is different from that 
in the MOPSO algorithm. In the SOPSO algorithm, each 
particle follows its objective function in the search process. 
The vector evaluated PSO (VEPSO) is a multi-objective 
algorithm that uses one swarm for each objective. Thus, each 
swarm uses its particle position as the Pbest, but the Gbest of 
each swarm is replaced by the Gbest of other swarms for the 
next iteration. 

B. Defining Pareto Front 

Vectors including target functions which are made from 
vectors of Pareto collections (Θ*) are called Pareto Front 
(Ω is an accepted design region which satisfy  Eq. (2) and Eq. 
(3).). 

 

The results of multi target optimization have no superiority 
toward each other and are called non superior results. In  
Fig. 1, for example can see the Pareto points, in this figure by 
moving from A to B (or vise versus), any improvement in 
condition of any target functions can deteriorate the condition 
of at least one target function of problem, (the goal is to 
minimize or maximize both target functions). Pareto optimum 
points almost are located in boundary lines of design region or 
are over lapped points of target functions. In Fig. 1 the bold 
line shows such boundary line of two target functions which its 
component points are called Pareto Front. 

 

 

Figure 1.  Pareto points in a curve form 

 

IV. OPTIMIZATION ACCORDING TO MOPSO 

A. Optimization according to special thrust and special fuel 

consumption target functions (ST, SFC) 

Pareto point's collections in Fig. 2, is shown according to 
target functions and by using MOPSO algorithm. 

 

Figure 2.  Pareto points of specific thrust and specific fuel consumption 

 

Comparing one and two design vectors, assist us to 
conclude that by increase in 0.00014% of the special thrust, 
fuel consumption will be escalated up to 0.01%. By 
considering Pareto curves, we observe that point expansion is 
in the limited space (has a small range). It means that MOPSO 
algorithm tends to being close to the best point of optimization. 
Fig.3 and Fig.4 show the Pareto points collection according to 

compressor pressure ratio )( c  and flight Mach number

)( 0M . 

 

 

Figure 3.  Pareto points of specific fuel consumption vs Mach number and 

compressor pressure ratio according to specific thrust and specific fuel 

consumption optimization 
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Figure 4.  Pareto points of specific thrust vs Mach number and compressor 

pressure ratio according to specific thrust and specific fuel consumption 
optimization 

B. Optimization according to special thrust and thermal 

efficiency target functions (ST, t ) 

Pareto points of these target functions are shown in Fig. 5, 
by using MOPSO method. Comparing one and two design 
vectors reveals that by increasing 0.28% of special thrust, 
thermal efficiency will be decreased up to 0.093%.  

 
Figure 5.  Pareto points of specific thrust and thermal efficiency 

 

Since the goal is increasing the thrust and thermal 
efficiency and also by considering the fact that decreasing 
thermal efficiency compare to increasing thrust is negligible, 
therefore the second design vector should be considered more 
valuable than the first one. 

Pareto points' sets of these target functions are shown in 
Fig. 6 and Fig. 7, based on compressor pressure ratio and Mach 
number. 

 

Figure 6.  Pareto points of specific thrust vs Mach number and compressor 

pressure ratio according to thrust and thermal efficiency optimization 

 

Figure 7.  Pareto points of thermal efficiency vs Mach number and 

compressor pressure ratio according to thrust and thermal efficiency 

optimization 

 

C. Optimization according to special fuel consumption and 

thermal efficiency target functions (SFC, t ) 

Fig. 8 shows the Pareto curve according to these target 
functions. Comparing one and two design vectors help us to 
reach to the conclusion that by 0.00055% growth in specific 
fuel consumption, thermal efficiency will be increased up to 
0.0011%. By considering Pareto curves, we observe that point 
expansion has a small range. It means that MOPSO algorithm 
tends to being close to the best point of optimization. 

Pareto points' sets of these target functions are shown in 
Fig. 9 and Fig. 10 based on compressor pressure ratio and 
Mach number. 
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Figure 8.  Pareto points of specific fuel consumption and thermal efficiency 

Figure 9.  Pareto points of thermal efficiency vs Mach number and 

compressor pressure ratio according to thermal efficiency and specific fuel 
consumption optimization 

 

Figure 10.  Pareto points of specific fuel consumption vs Mach number and 

compressor pressure ratio according to thermal efficiency and specific fuel 
consumption optimization 

 

 

 

 

 

V. CONCLUSION 

Below, the results of MOPSO optimization method are 
collected.  

It can be seen that specific thrust is more affected by 
compressor pressure ratio; it means that by neglecting Mach 
number, wherever the compressor pressure ratio is high, the 
specific thrust is increasing.  

By considering the Pareto curves more carefully, we reach 
to the point that specific fuel consumption has almost a direct 

relationship with square of specific thrust )( 2STSFC . 

Also by notifying Pareto points of thermal efficiency and 
specific thrust, we conclude that the relationship between these 
two target functions is a linier relationship or on the other hand

)(STmt where m is )01(  m . 

Based on designed Pareto points we can see that Pareto 
points expansion of MOPSO optimization method is small. 
This characteristic can be considered as a power of MOPSO 
which these Pareto points is tended to keep close to the best 
answer. 
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APPENDIX  I 

 
Symbol Quantity unit 

0a  
Velocity of sound at inlet m/s 

0m  
Mass flow rate Kg/s 

4tT  
Burner exit total temperature K 

prh  
Heating value kJ/kg 

0V  
Air velocity at inlet m/s 

cg  
Newton's constants kg-m.(N-s2)-1 

R Gas constants J/kg.K      

F Thrust N 

0M  Flight Mach number  

r  
Total static temperature ratio at inlet              

t  Burner exit/inlet total temperature ratio              

  Burner exit total enthalpy/inlet total 

enthalpy 

 

 

c  
Compressor exit total 

temperature/Compressor inlet 

temperature 

 

  f Fuel/air ratio  

ST Specific thrust  

SFC Specific fuel consumption         

t  Thermal efficiency                  

c
 Total compressor pressure ratio     
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