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ABSTRACT

*

Let W, be a hypersurface of the Weyl space 17,

n+l

.Let v(i =1,2,...,n) be tangent vector fields belonging to
i

* % *

W, and n be the normalized normal vector field of W, . Consider the (7 + 1) - net (v, Vyey Vy n) . By using
12 n

the prolonged covariant differentiation, we first obtain the set of formulas corresponding to the Frenet

formulas for W, associated with a curve C on W, having the tangent vector field v . We then, derive two
1

invariants concerning the orthogonal ennuple (v,v,...,v), v(i =1,2,...,n) being differentiable vector fields
12 n i

on W
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BiR WEYL UZAYININ GOZONUNE ALINAN HiPER YUZEYLERININ BAZI OZELLiKLERi

OZET
*

W, W,

n+l

Weyl uzaymun bir hiperyiizeyi olsun. v(i = 1,2,...,n), W, e ait teget vektor alanlari ve n, W, ’in
l * % %

normalize edilmis normal vector alani olsun. (\11, \2/, eV, n) (n+1)-li sebeke goz Oniine alinsin.

n

Genellestirilmis kovaryant tiirev kullanilarak, énce W, hiperyiizeyinin bir C egrisinin \1/ teget vector alanina

bagli olarak Frenet formiillerine tekabiil eden formiiller elde edilmistir. Sonra, W,’de tanimh

v(i =1,2,...,n) orthogonal sebekesi yardimiyla iki invariyant tanimlanmustir.

1

Anahtar Sozciikler: Weyl uzayi, Egrilerin sebekesi, Prolonged kovaryand tiirev.
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1. INTRODUCTION

An n dimensional manifold Wn is said to be Weyl space if it has a symmetric conformal metric

tensor g and a symmetric connection V  satisfying the compatibility condition given by the

equation
vk 8 :ZTk 8 (1.1)
where T, + denotes a covariant vector field. The symmetric tensor & i is normalization of the
form
v
2
g, =1 g (12)

and the covariant vector field 7 « 1s transformed by the rule

v
T,=T,+0, mnA (1.3)
where A isa point function on Wn [1].

Let the coordinates of a Weyl hypersurface of 72 dimensions and its enveloping space

of (I’l + 1) dimensions be defined by © K and x* , respectively and let
0
out

A quantity A is called satellite with weight of k of the fundamental tensor &

0, (1.4)

4
Under the renormalization of & i of the form & i= A2 8> the quantity A changes according
the rule
A=1"4. (1.5)

The prolonged covariant derivative and the prolonged derivative of the satellite 4 are
defined as follows, respectively

V,A=V,A-k T 4 (1.6)
[2] and
0,A=0, A—kT, A4 (1.7)

[3] where Vl. A is usual derivative of the satellite 4 and O ;A is partial derivative of
the satellite A.

Let W be any vector belonging to Wn _If W' are the contravariant components of the

. .. . k.
vector W, the covariant derivative of W' with respectto U is
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0w’ .
Vk a)’=a—k szk o’ (1.8)
u
where W;k are the coefficients of the connection V + and are defined by the form
i )i i i mi
ij —{jk}_(Tk5_/+Tj5k—ngjkg ) (1.9)

i

and { Jk } are called the second kind Christoffel symbols and are defined as follows
fl=5e )
Jk —Eg Ejrk T 8hj ~8jkr) (1.10)

. . o . k
Here, the & ek 18 the partial derivative of & r with respectto U~ .

i

A Weyl space is shortly denoted by Wn (ij >8> T k )

Let Wn (glj,Tk) be a hypersurface of the Weyl space VVH+1 (gab,TC) and x“
(a =12,....n+ 1) and u' (i = 1,2,...,1’1) be the coordinates of VVHI (gab,Tc) and
w, (gi/ T, ), respectively. The metrics of W, (gl.j , T ) and W, (gab , Tc) are connected

by the relations
8y =8u Xi xf (j =12,...,mb= 1,2,...,n+1) (1.11)
where xi" is the covariant derivative of X with respect to ui .
The prolonged covariant derivative of A with respect to u* and x© are V kA and
V c A | respectively. These are related by the conditions
V,A=x{V, A4 (k=12,...n5¢=12,...,n+1). (1.12)
Let the normal vector field 17“ of VVn (g ij,T k) be normalized by the condition
g n‘ nb =1. Since the weight of xl.a is {0}, the prolonged covariant derivative of xl.a R
relative to U k , is given by [1]
V.x' =V, x' =w, n (1.13)
where W, are the coefficients of the second fundamental form of W (g i T, )

On the other hand, it is easy to see that the prolonged covariant derivative of n is
given by

- a il _a
v.n'=-o, g" x;. (1.14)

By means of (1.13), the prolonged covariant derivative of X ; is found to be [4]
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V.x!=Qln,. (1.15)

Let Vf and vj be the contravariant components of the vector field V,. relative to

r

Wn 4 (g ab,T C) and VVn (g ij,T P ), respectively. Denoting the components of V relative to

VV+1 (gab,Tc) and Wn (gl.j,Tk)by \r/a and \r/,' we have [4,5]

n

r i r
a

vi=x{v', ve =xavi. (1.16)
r r

r

The prolonged covariant derivatives of the vector field V and its reciprocal V are,
-

respectively, given by [5]

r N

. . s . . r
Vv =T v\ V,ovi==T, v. (1.17)
r r N N

2. THE FORMULAS BELONGING TO THE ORTHOGONAL NET

The prolonged covariant derivative of n® in the direction of V can be written in the form [6,7]
1

* *
kG a _ a _ k¢ al\. b
v V,n" =k v k1—gab(‘l’ V,n )vl @.1)
in which
* * *
g, n V=0 g, nn"=1,g,v" V=1 22)
1 1 1
* *

We call v the first tangent vector field and k |V the first curvature vector field and
1 1

kl the first curvature of C.

Since
¥

g (\I/k o ) n=kg, vl" n’ =0, 2.3)

. . k¢
n® is perpendicular to V ana .
1
*
Taking the prolonged covariant derivative of V in the direction of vV, we find that
1 1
* *

kO a a a
111 V,{v1 =an +,Hv2 (2.4)

where
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* * * * *
b b b
gun’ V=0, 8 vl" V=0, & vz" vl 2.5)

By using (2.2), (2.3) and (2.5) from (2.4), we obtain @ = —Kk, . Putting f = k,, (2.4)

becomes
* *

k¢ a _ a a
v V,{v1 =—kn +k2v2 . (2.6)

We call Vv the second tangent vector field and k2 V the second curvature vector field
2 2

and k2 the second curvature of C.
* * * *

Since V is perpendicular to V , the equality &, v v =0 is satisfied. If we take the
s s—1 s s-1

prolonged covariant derivative of this equality in the direction of vV, we get
1

£ * ¥

k a a a
VIV Vi ==k Vit k v 2.7)
1 K s—1 s+l

* *

We call v the (s+1) th. tangent vector field and k <11 V. the (s+1) th. curvature vector
s+1 s+1

field and ks+l the (s+1) th. curvature of C.

%

Proceeding the same way, we finally obtain the derivative of V in the form
n

k3 £
P
vV, v =—k v (2.8)
1 n n-1
Generally, the expression (2.8) can be written as
¥ * ¥
k¢ a a a
vV v = vi—k v 2.9
1 k 2 Pl p+l P p-1 ( )

where an =0 and ko =0.

k3 k3

We call Vv the nth. tangent vector field and kn Vv the nth. curvature vector field and
n n+l

kn the nth. curvature of C.

* ok *

In this way, we obtain n mutually orthogonal vectors V, V,...,V at a point P of C which
12 n

satisfy the condition

* *

gV vf’ =0’ (r,s=12,..,n) (2.10)

Now, we shall obtain some important results by the first and second order prolonged
covariant derivatives of the vector fields of the ennuple:
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From (2.7), we have

* * *
[
vV VoV ==k vtk V'
1 s s—1 s+1

If we take the prolonged covariant derivative of both sides of the above equality in the

direction of V, we have
1

* £ *

(. NG b [
VIV v VY =vm(va) Vv [+v V'V, Vv
s 1 1 1 s 1 s

* ¥ * ¥ *
_ a a a . m [y a a
- ks+l ks+2 3:_2_ ks+l vb + :‘)+1‘1) (vmks-H) _ks ks Vb - ks—l 3}_2
*
—vV"(V k @.11)
s-11 mes '

*

If we multiple (2.11) by &, V , we get
s+1

. /o .
g V'V [V Vv =" (mGm) (2.12)
s+l 1 1 1 1
If ks +1 18 constant, the left hand side of (2.12) is zero and if left hand side of (2.12) is
Zero,
k 441 1S constant.

Hence:

Corollary 2.1
The necessary and sufficient condition that the second order prolonged covariant

*

derivative of the S th. tangent vector field in the direction of V be orthogonal to V' is that k ol
1

s+1
be constant.
*

Let us multiple (2.11) by & ., v’ . Then we have
)

1 s

' \1/'" . (vl v, v“j vsb =—(kf+1+kf).. (2.13)

If ks+l = ks = (0, the right hand side of (2.13) is zero. That is, the left hand side of

(2.13) is zero. If left hand side of (2.13) is zero, ks = ks+l = 0 . From this it follows that

Corollary 2.2
The necessary and sufficient condition that the second order prolonged covariant

derivative of the S th. tangent vector field be orthogonal to itself is that both ks =0 and

ks+1 :0
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*

If we multiple (2.11) by &, Vb , we obtain
s—1

* *

(. :
g, V'V IV VY ="V k.. (2.14)
1 1 s s—1 1

If k ¢ 1s constant, the right hand side of (2.14) is zero and conversely, if the left hand

side of (2.14) is zero, then k ¢ 1s constant.

Hence:

Corollary 2.3
The necessary and sufficient condition that the second order prolonged covariant

derivative of the S th. tangent vector field in the direction of V be orthogonal to the (S - l)th.
1

tangent vector field is that k ¢ be constant.

If we replace § by § —1 in (2.12), we get
. /- .
g V'V V VIV ="V k. (2.15)
s 1 1 s—1

m m's
1

From (2.14) and (2.15), we obtain

* * * *
. I b . /- b
g V'V VIV | ==g V'V |V VY. (2.16)
s 1 1 s—1 1 1 K} s—1
Therefore:

Corollary 2.4
The components of the second order prolonged covariant derivative along the

(S — 1)th. tangent vector field is equal to the negative of the components of the (S — l)th.
tangent vector field along the § th. tangent vector field.

* *

Since the vector field V is perpendicular toV, g, I Vb =0 holds. If we take the
N

s—1 s=1 s

E3 *

prolonged covariant derivative of this equality, we find

kS * * *

a RS b RS a b _
&V \I)V,vY + g le‘él v =0. (2.17)

Again if we take the prolonged covariant derivative of the same equality, we have

;- . L
g,V VIV [V VO +2g, | VIV, VY VOV
s=1 |1 1 s 1 s—1 1 s
* *
Iv b
g, V'V [V V[V =0 (2.18)
1 1 s—1 s
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With the help of (2.17), we have

* *

: L
g, | V'V, v [V VY =0 (2.19)
1 1 s

s—1

From here:

Corollary 2.5
The prolonged covariant derivatives of the consecutive tangent vector fields in the

direction of V are orthogonal.
1
*

Now, if we multiple (2.11) by &, v , we obtain
s=2

* *

Vv W =kk

sVs—1"

/

g, V"V, v (2.20)

1 1 s s=2

Itk g or ks_l is zero then the left hand side of (2.20) is zero and if the left hand side of
(2.20) is zero, either ks =0 or ks_l =0.

Hence:

Corollary 2.6
The necessary and sufficient condition that the second order prolonged covariant

derivative of the § th. tangent vector field be orthogonal to (S — Z)th. tangent vector field is that

eitherks =0ork 120.

s—
*

If we multiple (2.11) by g, V", we have
s+2

m I & b
gulv Vv, (v Vv, v“] vi=k k., @221)
1 1 s s+2
If ks+1 =0 or ks+2 =0, then the left hand side of (2.21) is zero. Conversely, if the
left hand side of (2.21) is zero, then either ks+1 =0 or ks+2 =0.
Therefore:

The necessary and sufficient condition that the second order prolonged covariant
derivative of the S th. tangent vector field in the direction of V be orthogonal to (S + 2)th.
1

s+2 0 '
If § isreplaced by S +2 in (2.20), we have

tangent vector field is that either k 1 = 0ork

* *

gabxl/m v, \I/Vlv“ V= ko k. (2.22)

42 s+17s+2

If we compare (2.21) and (2.22), we get
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* * * *

m < IS a b m I ¢ a b
8|V V., YV,V V=g, vV o IvV vt (2.23)

s s+2 1 1 s+2 s

* *

We know that g, V! vb =0. If we take the prolonged covariant derivative of both

s s+2
* * * E3
. . . . . I ¢ b I ¢ b
sides equation in the direction of vV, we have g, vy Vl V+g.,lv Vl v v =0.
1 s 1 s+2 1 s ) s+2

Again if we take the prolonged covariant derivative of the last equality, we get

* * * *
a m [ & b m a [ b
g,vV'lvV, |vVy + g, vV, v vV, v+
K 1 1 s+2 1 K 1 s+2
* * * *
[ = b . I b
g, vV, vV + g, V'V, vV v |V =o0. (2.24)
1 s 1 s+2 1 1 s s+2
Using (2.23) and (2.24), we obtain
* * * *
) I 3 ) I 3
gl V'V VIV VY =—g vV [V VY=
1 s 1 s+2 s 1 1 s+2
. . (2.25)
) L A
g, V'V, [ VV VY
1 1 K s+2

From here:
Corollary 2.7

*
The necessary and sufficient conditions that the prolonged covariant derivative of V in

N
*

the direction of V be orthogonal to the prolonged covariant derivative of V is that either the
1

s+2
* E3
second order prolonged covariant derivative of V be orthogonal to V or the second order
s+2 s
* *
prolonged covariant derivative of V be orthogonal to Vv .
s s+2

Now, we consider a particular case. For example; the case of § = 1. Then we obtain
from (2.11) that

* * *

(. :
VIV IV VoV =k, | kv =k, v +v”vm(mG2)—
1 1 1 3 1 21
) (2.26)
a a . my"
k, klvl —n'y v,k
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%

Multiplying (2.26) by &, Vb , the following equality is found
3

* *

m IS a b _
g |V V., 11/V11/1 v =k)k, . (2.27)

If k2 =0or k3 =0, then the left hand side of (2.40) is zero. Conversely, if the left
hand side of (2.27) is zero then either k2 =0or k3 =0.

Therefore:
Corollary 2.8
If kz =0or k3 =0, the second order prolonged covariant derivative of the first

tangent vector field in the direction of V is orthogonal to the third tangent vector field. The
1

converse is also true.
"

If we multiple (2.26) by & ., v , we get
1

: I 2 2
g, V'V [V VY= —(k2 +k, ) (2.28)
1 1 1 1
If k2 =0= kl , then the left hand side of (2.28) is zero. Conversely, if the left hand

side of (2.28) is zero, then k2 =0= kl .
Hence:
Corollary 2.9
kz =0= kl is the necessary and sufficient condition for the orthogonality of the

second order prolonged covariant derivative of the first tangent vector field in the direction of vV
1

to itself.
If we multiple (2.26) by &, Vb , we get
1
. /o .
g, V'V VY V=V k. (2.29)
1 1 1 2 1

If k , = constant, then the left hand side of (2.29) is zero. Conversely, if the left hand

side of (2.29) is zero, we obtain k , = constant.

From here:
Corollary 2.10
The necessary and sufficient condition that the second order prolonged covariant
derivative of the first tangent vector field in the direction of V be orthogonal to the second
1

tangent vector field is that k , be constant.
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Multiplying (2.26) by &, I’lb , we have

*

m |
gslv V, | vVy

1 1 1

a

n’ = —11/" v, k. (2.30)

If kl is constant, then the left hand side of (2.30) is zero. Conversely, if the left hand

side of (2.30) is zero, then k | 1s constant.
Therefore:
Corollary 2.11
kl = constant is the necessary and sufficient condition that the second order prolonged

covariant derivative of the first tangent vector field in the direction of V be orthogonal to the
1

normal vector field.
Hence:
If the right hand side of (2.28) is zero, then the right hand side of (2.27), (2.29) and
(2.30) are also zero.
From this it follows

Corollary 2.12
If the second order prolonged covariant derivative of the first tangent vector field in the

direction of Vis orthogonal to itself, then it is also orthogonal to the normal vector field, the
1

second tangent vector field and the third tangent vector field.
Multiplying (2.6) by gabnb , we get

¥ a b
b \{V,Vl n’ =-k (2.31)

If kl = 0, then the left hand side of (2.31) is zero and the converse of it is also true.

Hence:

Corollary 2.13
The necessary and sufficient condition that the prolonged covariant derivative of the

first tangent vector field in the direction of V be orthogonal to the normal vector field is that kl
1

be zero.
If we multiple (2.6) by &, v , we obtain
2
I a b _
S|V V,v1 v =k,. (2.32)

Ifk , = 0, then the left hand side of (2.32) is zero. The converse is also true. Thus, we have
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Corollary 2.14
The necessary and sufficient condition that the first order prolonged covariant derivative

of the first tangent vector field in the direction of V be orthogonal to the second tangent vector
1

field is that k2 be zero.

If kl =0 and kz =0, then the right hand side of (2.31) and (2.32) are zero. In this

case, the right hand side of (2.28) is zero.
Therefore, we have

Corollary 2.15
If the second order prolonged covariant derivative of the first tangent vector field is

orthogonal to itself, then the first order prolonged covariant derivative of the first tangent vector
field is orthogonal to the normal vector field as well as to the second tangent vector field.

We have seen from (2.32) that if k ) = O the first order prolonged covariant derivative
of the first tangent vector field is orthogonal to the second tangent vector field. The converse of it
is also true. But from (2.27) for k2 =0, it is seen that the second order prolonged covariant

derivative of the first tangent vector field is orthogonal to the third tangent vector field. Hence:

Corollary 2.16
If the first order prolonged covariant derivative of the first tangent vector field in the

direction of V is orthogonal to the second tangent vector field, then the second order prolonged
1

covariant derivative of the first tangent vector field in the direction of V is orthogonal to the
1

third tangent vector field.
We know that the equation of (2.28) had been expressed as

* *

8| V" V[V Vv Y == (k k). (2.33)

1 1 1

If k2 is constant, then from (2.29) the second order prolonged covariant derivative of

the first tangent vector field in the direction of V is orthogonal to the second tangent vector field.
1

If kl is constant, then from (2.30) the second order prolonged covariant derivative of

the first tangent vector field in the direction of V is orthogonal to the normal vector field.
1

If the conditions kl = constant and k2 = constant are satisfied, then we obtain from
(2.33) that

* *
m [ b
|V ' \I/V, vl" V' = constant.

Corollary 2.17
If the second order prolonged covariant derivative of the first tangent vector field is

orthogonal both to the normal vector field and to the second tangent vector, then this and the first
tangent vector field cut each other under a constant angle.
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3. THE DERIVATIVE FORMULAS FOR A GEODESIC TANGENT

Definition 3.1: Let C be a curve in the Wey hypersurface VVn and let V be the tangent vector
1

field of C. If the prolonged covariant derivative of V in the direction of itself is zero, then C is
1
called geodesic, i.e.
ke 1

vV, v =0.

1 1
Let us consider the geodesic tangent vector field of the curve C' at the point P and let us denote
it by C P Furthermore, let us denote the tangent vector field, the principal normal vector field
and the binormal vector field belonging to C < by V, 7, ﬁz , respectively

1

We know from (2.1) that

*

P
vV, n =k 3.1
1 1

We can write
k & a _ =k a _ —a —a
v V,.n =V V,n" =1,n, -0V (3.2)

from Darboux_Ribocour Equations, where 7| and 7, are the first and the second curvature of
the geodesic tangent to the curve C , respectively, T , and 7, are the normal curvature and the

geodesic torsion of the curve C | respectively.
From (3.1) and (3.2), we get

s

a __ —a —a
klv1 =0 =TV 3.3)
If we multiple (3.3) by itself, we obtain
2 2 2
k=7 +7,". (3.4)

Therefore, we can state the following theorem:
Theorem: 3.1.

If any two of the following properties for a curve in a hypersurface Wn of Weyl space Wn
satisfied, then the third also holds:
i) The first curvature of the geodesic tangent vanishes.

41 are

i) The geodesic torsion of the curve is zero.

ii1) The first curvature of the curve C is zero
Theorem: 3.2.
If the curve C is an asymptotic line, then the prolonged covariant derivative of the normal vector

field in the direction of V is orthogonal to the curve.
1
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Proof: 3.2.

Let C be an asymptotic line. Then the normal curvature of C' is zero, that is, K = 0.
11

For C R

g

Kk=1,=0 (3.5)
11

is satisfied.

We know that
P
K=-gy (v an”)vb. (3.6)
1 1

*

P
From (3.5) and (3.6), we see that V Vk}’la is orthogonal to V.
1 1
The proof is completed.
k — —
On the other hand, we know that v Vkl’la = r2n2” -7 v from (3.2). Since
1 1

k¢ —b
g (v an“)v =0, we get
1 1

7, =0. 37
This says

k =1,. (3.8)
Also from (3.3)

V' =n, 3.9)

From (3.8):

Corollary 3.1
The product of the prolonged covariant derivative of the normal vector field along

asymptotic line by itself is the geodesic torsion of the asymptotic line.

4. ON THE HYPERSURFACES MEETING UNDER A CONSTANT ANGLE

We consider a curve C with the tangent vector field V which is common to two hypersurfaces
1

Wn and V?n .Let 7 and 71 be the normal vector fields with respect to these hypersurfaces. If

these hypersurfaces meet at a constant angle then the following condition is satisfied:
k& —
v Vk(gabn”nb):o (4.1
1
From this it follows that

S {yk(vkn”)}ﬁ" +gabn“{yk v’ f=0. “2)
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Since VVH and Wn meet under a constant angle, C is a line of curvature for both

* *

koo
hypersurfaces, so that, V' V p n’ = kl v where v are the components of the tangent vector
1 1 1

. 2. . .
field to the curve with respect to VVn 4 and kl is the inner product of the prolonged covariant

derivative of the normal vector field 72 in the direction of V by itself.
1
* *

kS — - —
Also V' V 1 ‘= kl v* where V“ are the components of the tangent vector field
1 1 1

. 17 7.2 . . .
to the curve with respect to VVn 4 and kl is the inner product of the prolonged covariant
. = . . . —k. .
derivative of the normal vector field 72 in the direction of V by itself.
1

From the above information and (4.2), we obtain

* *
a | —b al 7 —=b | _
g klvl n’+gunt|k Vl =0,

(4.3)or
* a —*b
a—b cos<x| n“,v
kl gabn vl 1
— =— - =— - . 4.4
kl a —=b a —b
2 V1 n cosX|{ v ,n
1
We can express this as:
Theorem : 4.1.

Ifacurve C is common to two hypersurfaces Wn and Wn of the Weyl space VVn + ( 8> 7:,)

such that they meet under a constant angle along C, then = isa gauge invariant for
1

VViHl(gab’T;) *

5. AN INVARIANT ASSOCIATED WITH AN ORTHOGONAL ENNUPLE IN A WEYL
HYPERSURFACE

Theorem: 5.1.

n
2 2 . . . L.
The sum Zkr where kr is the inner product of the prolonged covariant derivative of the
r=1
normal vector field to a Weyl hypersurface in the direction, of the rth vector of an orthogonal
ennuple by itself, is an invariant.

55



N. Kofoglu Sigma 2005/4

Proof:

Let us denote the orthogonal ennuple in VVn by (V, Vyerunnn ,V). The prolonged covariant
1 2 n

derivative of the normal vector field in the directions of the vectors of the orthogonal ennuple can
be expressed, by (1.14), as

k¢ k i
ViVn'=—v w,g"x" (r=12,...,n). (5.1)
r r

From this we obtain

\/gah (yk v ) Vlnb) = \/gab (-v* %-g“X?)(—yl wlmg‘“‘XI’)
= ﬁgmj Yk YI [

i k1
with the help of (1.11) and (5.1). Let us denote this scalar by k,, ,1.e. krz = gm] V.V 0,0, .
r r N

(5.2)

If we take the sum of the squares with respect to 7, we find from (5.2) that

n

n

2 _ mj k1 . omj K
2k =2g vV @O0, =878 Oy, (5.3)
r=1

r=1

n
. k1 K
since z Vv v =g forthe vector fields of an orthogonal ennuple.

roor
r=1

n
. 2 . . .
This shows that E k , is an invariant. The proof of the theorem is completed.
r=1
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