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ABSTRACT 
 

Let nW  be a hypersurface of the Weyl space 1+nW  . Let 
*
( 1, 2, ..., )=

i
v i n  be tangent vector fields belonging to 

nW  and n be the normalized normal vector field of nW . Consider the ( 1)+n - net
* * *

1 2
, , ..., ,( )

n
v v v n . By using 

the prolonged covariant differentiation, we first obtain the set of formulas corresponding to the Frenet 

formulas for nW associated with a curve C on nW   having the tangent vector field
1
v . We then, derive two 

invariants concerning the orthogonal ennuple 
1 2

( , , ..., )
n

v v v , ( 1, 2, ..., )=
i
v i n  being differentiable vector fields 

on  nW . 
Keywords: Weyl space, Net of curves, Prolonged covariant derivative. 
MSC number/numarası: 57R55, 58A99. 
 
BİR WEYL UZAYININ GÖZÖNÜNE ALINAN HİPER YÜZEYLERİNİN BAZI ÖZELLİKLERİ  
 
ÖZET 
 

nW , 1+nW  Weyl uzayının bir hiperyüzeyi olsun. 
*
( 1, 2, ..., )=

i
v i n , nW ’e ait teğet vektör alanları ve n, nW ’in 

normalize edilmiş normal vector alanı olsun. 
* * *

1 2
, , ..., ,( )

n
v v v n  ( 1)+n -li şebeke göz önüne alınsın. 

Genelleştirilmiş kovaryant türev kullanılarak, önce nW  hiperyüzeyinin bir C eğrisinin 
1
v  teğet vector alanına 

bağlı olarak Frenet formüllerine tekabül eden formüller elde edilmiştir. Sonra, nW ’de tanımlı 

( 1, 2, ..., )=
i
v i n  orthogonal şebekesi yardımıyla iki invariyant tanımlanmıştır.  

Anahtar Sözcükler: Weyl uzayı, Eğrilerin şebekesi, Prolonged kovaryand türev.  
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1. INTRODUCTION 
 
An n  dimensional manifold nW  is said to be Weyl space if it has a symmetric conformal metric 

tensor ijg  and a symmetric connection k∇  satisfying the compatibility condition given by the 

equation 
 

k∇ ijg  = 2 kT ijg                                                                                                        (1.1)                               
 

where kT  denotes a covariant vector field. The symmetric tensor ijg  is normalization of the 

form  
 

v

ijg = 2λ ijg                                                                                                         (1.2)                               
 

and the covariant vector field kT  is transformed by the rule 
 

v

kT = kT k∂+  lnλ                                                                                                        (1.3)                               
 

where λ  is a point function on nW  [1].                                                                                    
Let the coordinates of a Weyl hypersurface of n  dimensions and its enveloping space 

of )1( +n  dimensions be defined by ku  and ax , respectively and let   
 

k∂  = ku∂
∂

.                                                                                                        (1.4) 
 

A quantity A  is called satellite with weight of  k  of the fundamental tensor ijg . 

Under the renormalization of ijg  of the form ij

v

ij gg 2λ= , the quantity A  changes according 

the rule 
 

AA kλ=
*

.                                                                                                        (1.5) 
 

The prolonged covariant derivative and the prolonged derivative of the satellite A  are 
defined as follows, respectively 
 

kAA ii −∇=∇� iT A                                                                                         (1.6) 
 

[2] and 
 

i∂� =A  i∂ kA − iT A                                                                                         (1.7) 
 

[3] where Ai∇  is usual derivative of the satellite A  and Ai∂  is partial derivative of 

the satellite .A  

Let w  be any vector belonging to nW . If iw  are the contravariant components of the 

vector w , the covariant derivative of iw  with respect to ku  is 
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k∇  iω = k

i

u∂
∂ω

+ i
pkW  pω                                                                                        (1.8)                                

 

where i
pkW  are the coefficients of the connection k∇  and are defined by the form 

 

{ } ( )mi
jkm

i
kj

i
jk

i
jk

i
jk ggTTTW −+−= δδ                                                         (1.9) 

                                        

and { }i
jk  are called the second kind Christoffel symbols and are defined as follows 

 

{ } iri
jk g

2
1

= ( )rjkjkrkjr ggg ,,, −+ .                                                       (1.10)    
                                                 

Here, the kjrg ,  is the partial derivative of jrg  with respect to ku .  

A Weyl space is shortly denoted by ( )kij
i
jkn TgWW ,, .                                                 

Let ( )kıjn TgW ,  be a hypersurface of the Weyl space ( )cabn TgW ,1+  and ax  

( )1,,2,1 += na …  and iu  ( )ni ,,2,1 …=  be the coordinates of ( )cabn TgW ,1+  and 

( )kijn TgW , , respectively. The metrics of ( )kijn TgW ,  and ( )cabn TgW ,1+  are connected 

by the relations 
 

abij gg = a
ix b

jx    ( )1,,2,1;,,2,1 +== nbnj ……                                       (1.11) 
 

where a
ix  is the covariant derivative of ax  with respect to iu .                                                     

The prolonged covariant derivative of A  with respect to ku  and cx  are Ak∇�  and 

c∇� A , respectively. These are related by the conditions 
 

c
kk xA =∇� c∇� A   ( )1,,2,1;,,2,1 +== ncnk …… .                                      (1.12) 

 

Let the normal vector field an  of ( )kijn TgW ,  be normalized by the condition 

abg an bn 1= . Since the weight of a
ix  is { }0 , the prolonged covariant derivative of a

ix , 

relative to ku , is given by [1] 
 

ik
a
ik

a
ik xx ω=∇=∇� an                                                                                      (1.13)                                

 

where ikw  are the coefficients of the second fundamental form of ( )kijn TgW , . 

On the other hand, it is easy to see that the prolonged covariant derivative of an  is 
given by 
 

kl
a

k n ω−=∇� ilg a
ix .                                                                                      (1.14) 

 

By means of (1.13), the prolonged covariant derivative of j
ax  is found to be [4]  
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j
k

j
ak x Ω=∇� an .                                                                                      (1.15) 

 

Let a
rv  and i

rv  be the contravariant components of the vector field rv  relative to 

( )cabn TgW ,1+  and ( )kijn TgW , , respectively. Denoting the components of 
r
v  relative to 

( )cabn TgW ,1+  and ( )kijn TgW ,  by a

r
v  and i

r
v  we have [4,5]  

 

a
i

a

r
xv = i

r
v  , a

i

a

r
xv = i

r
v .                                                                                     (1.16) 

 

The prolonged covariant derivatives of the vector field 
r
v  and its reciprocal 

r
v  are, 

respectively, given by [5] 
 

k∇� =i

r
v

s

r
T k

i

s
v  ,  

r

s
i

r

k Tv −=∇� k i

s
v .                                                                      (1.17) 

 

 
2. THE FORMULAS BELONGING TO THE ORTHOGONAL NET  
 

The prolonged covariant derivative of an  in the direction of  
1
v  can be written in the form [6,7]  

kv
1 k∇� 1kna =

*

1

av ,  ( )
*

1 1 1

k a b
ab kk g v n v= ∇�                                                                  (2.1) 

 

in which  

abg an
*

1

bv = 0,  abg bann 1=  , abg
*

1

av
*

1

bv =1 .                                                        (2.2) 

We call 
*

1
v  the first tangent vector field and 1k  

*

1
v  the first curvature vector field and 

1k  the first curvature of C.  
 Since  

( )
*

11 1
0,k a b a b

ab k abg v n n k g v n∇ = =�                                                                               (2.3) 
  

an  is perpendicular to 
1

k a
kv n∇� . 

Taking the prolonged covariant derivative of
*

1
v  in the direction of 

1
v , we find that  

* *

1 1 2

k a a a
kv v n vα β∇ = +�                                                                                                    (2.4) 

 

where  
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abg an
*

2

bv = 0, abg
*

1

av
*

2

bv = 0 ,  abg
*

2

av
*

2

bv =1 .                                                               (2.5) 
 

By using (2.2), (2.3) and (2.5) from (2.4), we obtain 1kα = − . Putting 2kβ = , (2.4) 
becomes 

* *

1 21 1 2

k a a a
kv v k n k v∇ = − +�  .                                                                                                 (2.6) 

We call 
*

2
v  the second tangent vector field and 2k

*

2
v  the second curvature vector field 

and 2k  the second curvature of C.  

Since 
*

s
v  is perpendicular to

*

1s
v
−

, the equality abg
*
a

s
v

*

1

b

s
v
−

= 0 is satisfied. If we take the 

prolonged covariant derivative of this equality in the direction of
1
v , we get  

* * *

11 1 1

k a a a
k s ss s s

v v k v k v+− +
∇ = − +�                                                                                                 (2.7) 

We call 
*

1s
v
+

 the (s+1) th. tangent vector field and 
*

1 1s s
k v+ +

 the (s+1) th. curvature vector 

field and 1sk +  the (s+1) th. curvature of C. 

Proceeding the same way, we finally obtain the derivative of
*

n
v in the form 

* *

1 1

k a a
k nn n

v v k v
−

∇ = −�                                                                                                                 (2.8)  
 

Generally, the expression (2.8) can be written as  
* * *

11 1 1

k a a a
k p pp p p

v v k v k v+ + −
∇ = −�                                                                                                 (2.9) 

 

where 1 0nk + =  and 0 0k = . 

We call  
*

n
v  the nth. tangent vector field and 

*

1n n
k v

+
the nth. curvature vector field and 

nk  the nth. curvature of C. 

In this way, we obtain n mutually orthogonal vectors 
* * *

1 2
, ,...,

n
v v v  at a point P of C which 

satisfy the condition  
 

abg
*
a

r
v

*
b

s
v = s

rδ   ( , 1, 2,..., )r s n=                                                                                   (2.10) 
 

Now, we shall obtain some important results by the first and second order prolonged 
covariant derivatives of the vector fields of the ennuple: 
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From (2.7), we have  
* * *

11 1 1

l a a a
l s ss s s

v v k v k v+− +
∇ = − +�  

If we take the prolonged covariant derivative of both sides of the above equality in the 
direction of 

1
v , we have  

 

*

1

m l a
m ls s

v v v⎛ ⎞
∇ ∇ =⎜ ⎟

⎝ ⎠
� � ( )

* *

1 1 1 1

m l l ma a
m l m ls s

v v v v v v⎛ ⎞ ⎛ ⎞
∇ ∇ + ∇ ∇⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
� � � �  

( )
* * *

1 2 1 12 1 1

ma a a
s s s m ss s s

k k v k v v v k+ + + ++ +

⎛ ⎞
= − + ∇⎜ ⎟

⎝ ⎠
�

* *

1 2

a a
s s ss s

k k v k v− −

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

( )
*

1 1

ma
m ss

v v k
−

− ∇�                                                                                                                    (2.11) 

If we multiple (2.11) by
*

1ab s
g v

+
, we get                        

 

* *

1 1 1 1

m lb a
ab m ls

g v v v v
+

⎛ ⎞
∇ ∇⎜ ⎟

⎝ ⎠
� � ( )11

m
m sv k += ∇�                                                        (2.12) 

 

If 1+sk  is constant, the left hand side of (2.12) is zero and if left hand side of (2.12) is 
zero, 

1+sk  is constant. 
Hence: 
Corollary 2.1 

The necessary and sufficient condition that the second order prolonged covariant 

derivative of the s th. tangent vector field in the direction of
1
v be orthogonal to 

*

1s
v
+

 is that 1+sk  

be constant.  

Let us multiple (2.11) by
*
b

ab s
g v . Then we have 

 

( )
* *

2 2
11 1

.m l a b
ab m l s ss s

g v v v v k k+

⎛ ⎞⎛ ⎞
∇ ∇ = − +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � .                                       (2.13) 

 

If 01 ==+ ss kk , the right hand side of (2.13) is zero. That is, the left hand side of 

(2.13) is zero. If left hand side of (2.13) is zero, 01 == +ss kk . From this it follows that  
Corollary 2.2 

The necessary and sufficient condition that the second order prolonged covariant 
derivative of the s th. tangent vector field be orthogonal to itself is that both 0=sk  and 

01 =+sk . 
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If we multiple (2.11) by 
*

1

b
ab s

g v
−

, we obtain          
 

* *

1 1 1

m l a b
ab m l s s

g v v v v
−

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� �

1

m
m sv k= − ∇� .                                       (2.14) 

 

If sk  is constant, the right hand side of (2.14) is zero and conversely, if the left hand 

side of (2.14) is zero, then sk  is constant.                                                                                                   
Hence: 
Corollary 2.3 

The necessary and sufficient condition that the second order prolonged covariant 
derivative of the s th. tangent vector field in the direction of 

1
v  be orthogonal to the ( )1−s th. 

tangent vector field is that sk  be constant. 

If we replace s  by 1s −  in (2.12), we get 
 

* *

1 1 1

m lb a
ab m ls s

g v v v v
−

⎛ ⎞⎛ ⎞
∇ ∇ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� �

1

m
m sv k∇� .                                                       (2.15) 

                              

From (2.14) and (2.15), we obtain 
 

*

1

ma
ab s

g v v
*

1 1

l b
m l s

v v
−

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � =

* *

1 1 1

m l a b
ab m l s s

g v v v v
−

⎛ ⎞⎛ ⎞
− ∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � .                              (2.16) 

 

Therefore: 
Corollary 2.4 

The components of the second order prolonged covariant derivative along the 
( )1−s th. tangent vector field is equal to the negative of the components of the ( )1−s th. 
tangent vector field along the s th. tangent vector field. 

Since the vector field
*

1s
v
−

 is perpendicular to
*

s
v , 

* *

1
0a b

ab s s
g v v

−
=   holds. If we take the 

prolonged covariant derivative of this equality, we find 
 

*

1

a
ab s

g v
−

*

1

l b
l s

v v⎛ ⎞
∇⎜ ⎟

⎝ ⎠
� +

* *

1 1

l a b
ab l s s

g v v v
−

⎛ ⎞
∇⎜ ⎟

⎝ ⎠
� 0= .                                       (2.17) 

 

Again if we take the prolonged covariant derivative of the same equality, we have 
 

*

1

a
ab s

g v
−

*

1 1
2m l b

m l abs
v v v g
⎛ ⎞⎛ ⎞

∇ ∇ +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� �
*

1 1

m a
m s

v v
−

⎛ ⎞
∇⎜ ⎟

⎝ ⎠
�

*

1

l b
l s

v v⎛ ⎞
∇⎜ ⎟

⎝ ⎠
� +

* *

1 1 1

m l a b
ab m l s s

g v v v v
−

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � = 0.                                                                                       (2.18) 
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With the help of (2.17), we have 
 

abg
*

1 1

m a
m s

v v
−

⎛ ⎞
∇⎜ ⎟

⎝ ⎠
�

*

1

l b
l s

v v⎛ ⎞
∇⎜ ⎟

⎝ ⎠
� 0=                                                                       (2.19) 

 

From here: 
Corollary 2.5 

The prolonged covariant derivatives of the consecutive tangent vector fields in the 
direction of 

1
v  are orthogonal. 

Now, if we multiple (2.11) by 
*

2

b
ab s

g v
−

, we obtain 
 

* *

11 1 2

m l a b
ab m l s ss s

g v v v v k k −−

⎛ ⎞⎛ ⎞
∇ ∇ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � .                                                       (2.20) 

 

If sk  or 1−sk  is zero then the left hand side of (2.20) is zero and if the left hand side of 

(2.20) is zero, either 0=sk  or 1−sk 0= . 
Hence: 
Corollary 2.6 

The necessary and sufficient condition that the second order prolonged covariant 
derivative of the s th. tangent vector field be orthogonal to ( )2−s th. tangent vector field is that 

either 0=sk  or 1−sk 0= . 

If we multiple (2.11) by
*

2

b
ab s

g v
+

, we have 
 

* *

1 1 2

m l a b
ab m l s s

g v v v v
+

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � = 21 ++ ss kk .                                                       (2.21) 

 

If 01 =+sk  or 02 =+sk , then the left hand side of (2.21) is zero. Conversely, if the 

left hand side of (2.21) is zero, then either 01 =+sk  or 02 =+sk .   
Therefore:  

The necessary and sufficient condition that the second order prolonged covariant 
derivative of the s th. tangent vector field in the direction of 

1
v  be orthogonal to ( )2+s th. 

tangent vector field is that either 01 =+sk  or 02 =+sk .  
If  s  is replaced by s +2 in (2.20), we have 

 

* *

1 1 2

m l a b
ab m l s s

g v v v v
+

⎛ ⎞⎛ ⎞
∇ ∇ =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� �

21 ++ ss kk .                                                       (2.22) 

 

If we compare (2.21) and (2.22), we get  
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* *

1 1 2

m l a b
ab m l s s

g v v v v
+

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � =

* *

1 1 2

m l a b
ab m l s s

g v v v v
+

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � .                      (2.23) 

 

We know that
* *

2
0a b

ab s s
g v v

+
= . If we take the prolonged covariant derivative of both 

sides equation in the direction of 
1
v , we have 

* *

1 2

la b
ab ls s

g v v v
+

∇ +�
* *

1 2

l a b
ab l s s

g v v v
+

⎛ ⎞
∇⎜ ⎟

⎝ ⎠
� 0= . 

Again if we take the prolonged covariant derivative of the last equality, we get  
 

* *

1 1 2

m la b
ab m ls s

g v v v v
+

⎛ ⎞⎛ ⎞
∇ ∇ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� �

*

1

m a
ab m s

g v v⎛ ⎞
∇⎜ ⎟

⎝ ⎠
�

*

1 2

l b
l s

v v
+

⎛ ⎞
∇ +⎜ ⎟

⎝ ⎠
�

* *

1 1 2

l ma b
ab l ms s

g v v v v
+

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� �  +

* *

1 1 2

m l a b
ab m l s s

g v v v v
+

⎛ ⎞⎛ ⎞
∇ ∇⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
� � = 0 .   (2.24) 

 

Using (2.23) and (2.24), we obtain  
 

* * * *

1 1 2 1 1 2

* *

1 1 2

+ +

+

⎛ ⎞⎛ ⎞ ⎛ ⎞
∇ ∇ = − ∇ ∇ =⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞

− ∇ ∇⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � � �

� �

m l m la b a b
ab m l ab m ls s s s

m l a b
ab m l s s

g v v v v g v v v v

g v v v v
                                (2.25) 

 

From here: 
Corollary 2.7 

The necessary and sufficient conditions that the prolonged covariant derivative of 
*

s
v  in 

the direction of 
1
v  be orthogonal to the prolonged covariant derivative of 

*

2s
v
+

is that either the 

second order prolonged covariant derivative of
*

2s
v
+

 be orthogonal to 
*

s
v  or the second order 

prolonged covariant derivative of 
*

s
v  be orthogonal to

*

2s
v
+

.  

Now, we consider a particular case. For example; the case of 1=s . Then we obtain 
from (2.11) that  
 

( )
* * * *

2 3 2 21 1 1 3 1 2 1

*

1 1 11 1

⎛ ⎞ ⎛ ⎞
∇ ∇ = − + ∇ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞

− ∇⎜ ⎟
⎝ ⎠

� � �

�

m l ma a a a
m l m

ma a
m

v v v k k v k v v v k

k k v n v k
                                    (2.26) 

 

Some Properties Concerning the Hypersurfaces …  



 
 

 50

Multiplying (2.26) by
*

3

b
abg v , the following equality is found 

* *

2 31 1 1 3

m l a b
ab m lg v v v v k k
⎛ ⎞⎛ ⎞

∇ ∇ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � .                                                       (2.27) 

If 02 =k or 03 =k , then the left hand side of (2.40) is zero. Conversely, if the left 

hand side of (2.27) is zero then either 02 =k or 03 =k . 
Therefore: 
Corollary 2.8 

If 02 =k or 03 =k , the second order prolonged covariant derivative of the first 

tangent vector field in the direction of 
1
v  is orthogonal to the third tangent vector field. The 

converse is also true. 

If we multiple (2.26) by
*

1

b
abg v , we get  

* *

1 1 1 1

m l a b
ab m lg v v v v
⎛ ⎞⎛ ⎞

∇ ∇ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � ( )2
1

2
2 kk +− .                                                      (2.28) 

If 12 0 kk == , then the left hand side of (2.28) is zero. Conversely, if the left hand 

side of (2.28) is zero, then 12 0 kk == . 
Hence: 
Corollary 2.9 

12 0 kk ==  is the necessary and sufficient condition for the orthogonality of the 

second order prolonged covariant derivative of the first tangent vector field in the direction of
1
v  

to itself. 

If we multiple (2.26) by
*

1

b
abg v , we get 

* *

21 1 1 2 1

m l ma b
ab m l mg v v v v v k
⎛ ⎞⎛ ⎞

∇ ∇ = ∇⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � � .                                                       (2.29) 

If =2k constant, then the left hand side of (2.29) is zero. Conversely, if the left hand 

side of (2.29) is zero, we obtain =2k constant. 
From here: 
Corollary 2.10 

The necessary and sufficient condition that the second order prolonged covariant 
derivative of the first tangent vector field in the direction of 

1
v  be orthogonal to the second 

tangent vector field is that 2k be constant. 
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Multiplying (2.26) by b
abg n , we have  

*

11 1 1 1

m l ma b
ab m l mg v v v n v k
⎛ ⎞⎛ ⎞

∇ ∇ = − ∇⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � � .                                       (2.30) 

 If 1k  is constant, then the left hand side of (2.30) is zero. Conversely, if the left hand 

side of (2.30) is zero, then 1k  is constant. 
Therefore: 
Corollary 2.11 

1k = constant is the necessary and sufficient condition that the second order prolonged 

covariant derivative of the first tangent vector field in the direction of 
1
v  be orthogonal to the 

normal vector field. 
Hence: 

If the right hand side of (2.28) is zero, then the right hand side of (2.27), (2.29) and 
(2.30) are also zero. 
From this it follows 
 Corollary 2.12 

If the second order prolonged covariant derivative of the first tangent vector field in the 
direction of

1
v is orthogonal to itself, then it is also orthogonal to the normal vector field, the 

second tangent vector field and the third tangent vector field. 

 Multiplying (2.6) by b
abg n , we get 

*

11 1

l a b
ab lg v v n k⎛ ⎞

∇ = −⎜ ⎟
⎝ ⎠

�                                                                        (2.31) 

If 01 =k , then the left hand side of (2.31) is zero and the converse of it is also true. 
Hence: 
Corollary 2.13 

The necessary and sufficient condition that the prolonged covariant derivative of the 
first tangent vector field in the direction of 

1
v  be orthogonal to the normal vector field is that 1k  

be zero. 

If we multiple (2.6) by
*

2

b
abg v , we obtain 

* *

21 1 2

l a b
ab lg v v v k⎛ ⎞

∇ =⎜ ⎟
⎝ ⎠

� .                                                                                      (2.32) 

If 02 =k , then the left hand side of (2.32) is zero. The converse is also true. Thus, we have  
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Corollary 2.14 
The necessary and sufficient condition that the first order prolonged covariant derivative 

of the first tangent vector field in the direction of 
1
v  be orthogonal to the second tangent vector 

field is that 2k  be zero. 

If 01 =k  and 02 =k , then the right hand side of (2.31) and (2.32) are zero. In this 
case, the right hand side of (2.28) is zero. 
Therefore, we have  
Corollary 2.15 

If the second order prolonged covariant derivative of the first tangent vector field is 
orthogonal to itself, then the first order prolonged covariant derivative of the first tangent vector 
field is orthogonal to the normal vector field as well as to the second tangent vector field. 

We have seen from (2.32) that if 02 =k  the first order prolonged covariant derivative 
of the first tangent vector field is orthogonal to the second tangent vector field. The converse of it 
is also true. But from (2.27) for 02 =k , it is seen that the second order prolonged covariant 
derivative of the first tangent vector field is orthogonal to the third tangent vector field. Hence: 
Corollary 2.16 

If the first order prolonged covariant derivative of the first tangent vector field in the 
direction of 

1
v  is orthogonal to the second tangent vector field, then the second order prolonged 

covariant derivative of the first tangent vector field in the direction of 
1
v   is orthogonal to the 

third tangent vector field. 
We know that the equation of (2.28) had been expressed as 

 

( )
* *

2 2
2 11 1 1 1

m l a b
ab m lg v v v v k k
⎛ ⎞⎛ ⎞

∇ ∇ = − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� � .                                                      (2.33) 

 

If 2k  is constant, then from (2.29) the second order prolonged covariant derivative of 

the first tangent vector field in the direction of 
1
v   is orthogonal to the second tangent vector field. 

If 1k  is constant, then from (2.30) the second order prolonged covariant derivative of 

the first tangent vector field in the direction of 
1
v   is orthogonal to the normal vector field. 

If the conditions 1k = constant and =2k constant are satisfied, then we obtain from 
(2.33) that 

* *

1 1 1 1

m l a b
ab m lg v v v v
⎛ ⎞⎛ ⎞

∇ ∇ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

� �  constant. 

Corollary 2.17 
If the second order prolonged covariant derivative of the first tangent vector field is 

orthogonal both to the normal vector field and to the second tangent vector, then this and the first 
tangent vector field cut each other under a constant angle. 
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3. THE DERIVATIVE FORMULAS FOR A GEODESIC TANGENT 
 
Definition 3.1: Let C be a curve in the Wey hypersurface nW  and let 

1
v  be the tangent vector 

field of C. If the prolonged covariant derivative of 
1
v  in the direction of itself is zero, then C is 

called geodesic, i.e. 

1 1
0k l

kv v∇ =� . 

Let us consider the geodesic tangent vector field of the curve C  at the point P  and let us denote 

it by gC . Furthermore, let us denote the tangent vector field, the principal normal vector field 

and the binormal vector field belonging to gC  by 21
,, nnv , respectively 

We know from (2.1) that  
 

kv
1 k∇� 1

an k=
*

1

av                                                                                         (3.1) 
 

We can write 
 

aaa
k

ka
k

k vnnvnv
112211

ττ −=∇=∇ ��                                                          (3.2) 
 

from Darboux_Ribocour Equations, where 1τ  and 2τ  are the first and the second curvature of 

the geodesic tangent to the curve C , respectively, 1τ  and 2τ  are the normal curvature and the 

geodesic torsion of the curve C , respectively. 
From (3.1) and (3.2), we get 

 

*

1 2 2 11 1

aa ak v n vτ τ= − .                                                                                        (3.3) 
                                             

If we multiple (3.3) by itself, we obtain 
 

2
2

2
1

2
1 ττ +=k .                                                                                        (3.4) 

 

Therefore, we can state the following theorem: 
Theorem: 3.1. 
If any two of the following properties for a curve in a hypersurface nW  of Weyl space 1+nW  are 
satisfied, then the third also holds: 
)i  The first curvature of the geodesic tangent vanishes.                                                            

)ii  The geodesic torsion of the curve is zero.                                                                         

)iii The first curvature of the curve C is zero  
Theorem: 3.2. 
If the curve C  is an asymptotic line, then the prolonged covariant derivative of the normal vector 

field in the direction of 
1
v  is orthogonal to the curve. 
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Proof: 3.2. 
Let C  be an asymptotic line. Then the normal curvature of C  is zero, that is, 

11
κ 0= . 

For gC , 
 

0111
== τκ                                                                                                         (3.5) 

  

is satisfied. 
We know that 

 

( )
*

11 1 1

k a b
ab kg v n vκ = − ∇� .                                                                                       (3.6) 

 

From (3.5) and (3.6), we see that a
k

k nv ∇�
1

 is orthogonal to 
*

1
v .  

The proof is completed. 

On the other hand, we know that a
k

k nv ∇�
1

aa vn
1122 ττ −=  from (3.2). Since 

( ) 0
11

=∇ ba
k

k
ab vnvg � , we get 

 

01 =τ .                                                                                                                        (3.7) 
 

This says 
 

21 τ=k .                                                                                                                       (3.8) 
 

Also from (3.3) 
 

*

21

a av n=                                                                                                                        (3.9) 
 

From (3.8): 
Corollary 3.1 

The product of the prolonged covariant derivative of the normal vector field along 
asymptotic line by itself is the geodesic torsion of the asymptotic line. 
 
4. ON THE HYPERSURFACES MEETING UNDER A CONSTANT ANGLE 
 
We consider a curve C with the tangent vector field 

1
v  which is common to two hypersurfaces 

nW  and nW . Let n  and n  be the normal vector fields with respect to these hypersurfaces. If 
these hypersurfaces meet at a constant angle then the following condition is satisfied: 
 

( ) 0
1

=∇ ba
abk

k nngv �                                                                                         (4.1)                                
 

From this it follows that 
 

( ){ } { } 0.
11

=∇+∇ b
k

ka
ab

ba
k

k
ab nvngnnvg �� .                                                        (4.2)  
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Since nW  and nW  meet under a constant angle, C is a line of curvature for both 

hypersurfaces, so that, 
kv

1 k∇� 1kna =
*

1

av where 
*

1

av are the components of the tangent vector 

field to the curve with respect to 1nW +  and 2
1k is the inner product of the prolonged covariant 

derivative of the normal vector field n  in the direction of 
1
v  by itself. 

Also 
kv

1 k∇� 1kn a =
*

1

av  where 
*

1

av  are the components of the tangent vector field 

to the curve with respect to 1nW +  and 2
1k  is the inner product of the prolonged covariant 

derivative of the normal vector field n  in the direction of 
kv

1
by itself. 

From the above information and (4.2), we obtain 
 

* *

1 11 1
0a b a b

ab abg k v n g n k v⎛ ⎞ ⎛ ⎞
⋅ + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,                                                                                                              

 

(4.3) or 
 

*
*

1
1 1

* *
1

1 1

cos ,

cos ,

a b
a b

ab

a b a b
ab

n vg n vk
k g v n v n

⎛ ⎞
⎜ ⎟
⎝ ⎠= − = −
⎛ ⎞
⎜ ⎟
⎝ ⎠

)

)
 .                                                        (4.4) 

 

We can express this as: 
Theorem : 4.1. 

If a curve C  is common to two hypersurfaces nW  and nW  of the Weyl space 1( , )n ab cW g T+  

such that they meet under a constant angle along C, then 1

1

k
k

 is a gauge invariant for 

1( , )n ab cW g T+ . 
 
5. AN INVARIANT ASSOCIATED WITH AN ORTHOGONAL ENNUPLE IN A WEYL 
HYPERSURFACE  
 
Theorem: 5.1. 

The sum 2

1

n

r
r

k
=
∑ where 2

rk  is the inner product of the prolonged covariant derivative of the 

normal vector field to a Weyl hypersurface in the direction, of the rth vector of an orthogonal 
ennuple by itself, is an invariant. 
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Proof: 
Let us denote the orthogonal ennuple in nW  by ( )

n
vvv ,,,

21
…… . The prolonged covariant 

derivative of the normal vector field in the directions of the vectors of the orthogonal ennuple can 
be expressed, by (1.14), as 
 

a
i

il
kl

k

r

a
k

k

r
xgvnv ω−=∇�   ( )nr ,,2,1 …= .                                         (5.1) 

 

From this we obtain 

( )( ) ( )( )k l k la b ij a mt b
ab k l ab kj i lm tr r r r

k lmj
kj lmr r

g v n v n g v g x v g x

g v v

∇ ∇ = − ω − ω

= ω ω

� �
                                                   (5.2) 

 

with the help of (1.11) and (5.1). Let us denote this scalar by rk , i.e. 2
rk = lmkj

l

r

k

r

mj vvg ωω . 

If we take the sum of the squares with respect to r ,  we find from (5.2) that 
 

∑∑
==

==
n

r
lmkj

l

r

k

r

mj
n

r
r vvgk

11

2 ωω lmkj
klmj gg ωω  ,                                        (5.3) 

 

since ∑
=

=
n

r

kll

r

k

r
gvv

1
 for the vector fields of an orthogonal ennuple. 

This shows that ∑
=

n

r
rk

1

2
 is an invariant. The proof of the theorem is completed. 

I am thankful to Prof. Dr. Leyla Zeren Akgün for her guidance. 
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