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ABSTRACT 
 
The admittance dyadics of the cylindrical corrugated chirowaveguides are calculated and analyzed for mode 
transformation. It is shown that by choosing proper lengths of chirowaveguides TM admittance can be 
transformed to TE admittance and vice versa. It is assumed that the depth of the corrugation for axial and 
transverse corrugations, forming hard and soft surfaces respectively, is a quarter wavelength. The results of 
this study point to the possibility of making mode transformers and phase shifters by using the cylindrical 
corrugated chirowaveguides. In the analysis of the admittance equations, it is observed that the length of the 
waveguide is of critical importance.  
Keywords: Soft and hard surface, chirowaveguides, admittance, mode. 
 
 

SİLİNDİRİK YUMUŞAK VE SERT YÜZEYLİ BAKIŞIMSIZ DALGA KILAVUZLARINDA MOD 
DEĞİŞİMİ İÇİN ADMİTANS TAYİNİ 
 
ÖZET 
 
Bu çalışmada silindirik oluklu bakışımsız dalga kılavuzunda admitans diyadik hesaplanıp mod değişimi için 
analiz edilmiştir. Uygun bakışımsız dalga kılavuzu uzunluğu seçilerek TM admitansın TE admitansa, TE 
admitansın da TM admitansa çevrilebileceği gösterilmiştir. Yumuşak ve Sert Yüzeyleri oluşturan enine ve 
boyuna oluk derinliğinin çeyrek dalga boyu olduğu kabul edilmiştir. Sonuç olarak silindirik oluklu bakışımsız 
dalga kılavuzları kullanarak mod değiştiricileri ve faz kaydırıcılarının yapılmasının mümkün olduğu 
görülmüştür. 
Anahtar Sözcükler: Yumuşak ve Sert Yüzey, bakışımsız dalga kılavuzu, admitans, mod. 
 
 
 
1. INTRODUCTION 
 
During the past decade, considerable attention has been given to the design of periodic structures 
that control the propagation of electromagnetic waves or the boundary conditions of 
electromagnetic fields in the desired direction. These kinds of structures are known as 
electromagnetic bandgap (EBG) structures. Soft and hard surfaces are also related to the EBG 
structures. These (SHS) boundaries are well known from acoustics. They have also been  defined 
for dually polarized electromagnetic waves. Kildal [1] explained the concept of SHS in detail by 
considering different geometries. Loading a conducting surface with longitudinal and transverse 
corrugations can form these surfaces. Corrugation in hard surface waveguide is in the axial 
direction, whereas corrugation in soft surface is in the transverse direction [2]. Chiral media have 
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also drawn attention in the last two decades due to its potential applications in the fields of 
electromagnetic, optics, microwave and millimeter wave frequencies. The lack of geometric 
symmetry between an object and its mirror image is referred to as chirality [3]. An artificial chiral 
medium for microwave frequency can be constructed by embedding such chiral objects as a wire 
helix, a möbius strip and an irregular tetrahedron in a non-chiral host medium [4]. Attention has 
focused on the properties of chiral media because the developments in constructing artificial chiral 
materials provide the additional degree of freedom that these materials offer for design processes 
via the chirality parameter. Several studies [5-6] have investigated extensively the characteristics 
of chirowaveguides and electromagnetic wave propagation in guided-wave structures containing 
chiral materials, which have been named as chirowaveguides by Pelet and Engheta [7]. Viitanen 
[8-9] considered the wave propagation in corrugated cylindrical waveguide filled with chiral 
material. He derived impedance dyadic and used it to analyze the mode transforming and phase 
shifting properties of the waveguide. The subject of SHS waveguides and chiral materials 
continue to be of great interest and practical importance owing to a variety of potential 
applications, as also by the special issue recently published on the subject [10]. Among these 
applications are mode transformers, phase shifters, filters and polarizers. 

In this study, unlike the previous studies the admittance dyadics of the cylindrical 
corrugated chirowaveguides are calculated and analyzed for mode transformation. It is shown that 
by choosing proper lengths of chirowaveguides TM admittance can be transformed to TE 
admittance and vice versa. It is assumed that the depth of the corrugation for axial and transverse 
corrugations, forming hard and soft surfaces respectively, is a quarter wavelength. In these types 
of cylindrical waveguides, it is known that there exists a weak coupling between eigenfields for 
small chirality parameters, which produces a change in polarization of the propagating field. The 
results of this study point to the possibility of making mode transformers and phase shifters by 
using the cylindrical corrugated chirowaveguides. 
 
2. THEORY 
 
Fig.1 presents the geometry of the cylindrical corrugated chirowaveguide. The surface S, assumed 
to be corrugated either axially or transversely, defines an infinite cylinder.  The cylinder is filled 
with a chiral medium with the constitutive relations 

  

D ε= E - j 00εµκ H,  B µ= H + j 00εµκ E                             (1) 
 

(assuming the jwte  time dependence), whereε , µ  and κ are permittivity, permeability and 
chirality admittance of the medium, respectively. If we assume a lossless chiral medium, all of the 
parameters are real numbers. 

             
   
               ρ=a                                                                                               Chiral Material (µ,ε,κ) 
 

                              Corrugated Surface                                                                     z 
          
                                S 

 
 
 

Figure 1. The geometry of a cylindrical corrugated chirowaveguide. 
 
The electromagnetic fields considered inside the chirowaveguide propagate along the z-

axis, zje β− , where β is the propagation factor. It is well known that inside the chiral medium 
there exist two propagating waves, i.e., right and left circularly polarized waves, denoted by + and 
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– waves, respectively. The total fields in the waveguide structure can be written with transverse 
and axial partial parts as 
 

E=  e + zE uz,    H = h + zH uz.                                  (2) 
 

Inserting the constitutive relations into the sourceless Maxwell equations and reducing it 
to the Helmholtz equation for the axial field components one will obtain the general solution in 
cylindrical coordinates with Bessel functions of the first kind, as 
 

ϕρϕρ jn
cnnz ekJAE )(),( ±±± =                                                                        (3) 

 

where 22 β−= ±± kkc
and  An± are constants to be determined by initial conditions. Then, one can 

obtain the expression for the partial transverse fields e± which can be completely determined by 
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can be rewritten as the summation of transverse and axial partial fields as 
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     .                           (5) 
 

The parameters kc±  can be determined by the boundary condition for the hard and soft 
surface at ρ = a, as 
 

0=⋅Eu ,       0=⋅Hu                                                                                                                (6) 
 

where zuu =  for hard surface and ϕuu = for soft surface boundary. These equations 

lead to the eigenvalue equation 0)()( =−+ akJakJ cncn . The solution to this equation is 

a
pk ns

c =± , where pns are zeros of the Bessel functions. For hard surface waveguide all index n 

exist but for soft surface waveguide only index 0=n  exists, as given in [8-9]. Different 

propagation factors for + and – waves can be obtained by 
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pk nsβ . It means that 

inside the corrugated chirowaveguide the eigenmodes with the same index n are always 
propagating separately. For nonchiral case k± = k and β± = β. For the small chirality 

parameter, r
k κ
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Here zkjzjjn
cnnz

reeekJAE κββϕρ )/( 2
)( m−

±± ≈ , which is the solution to the 
Helmholtz equation, and β and kc are the same as in nonchiral waveguide [8-9]. In order to find 
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the admittance values of the corrugated chirowaveguides the general field inside the waveguide 
can be presented as a combination of TE and TM fields in the following forms:  
The total axial electric field   
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and the total axial magnetic field   
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 denoting at z = 0 the axial field components as =)0(zE −+ += nnn AAE  and 
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and  the total transverse magnetic field   
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Equations (8)-(11) are valid for hard surface and soft surface but it is known that n is 
equal to zero for soft surface. The reason for n being zero is that the eigenwaves are coupled, and 
for other values of n there is no coupling effect between them. 
 
3. ADMITTANCE DETERMINATION FOR HARD SURFACE WAVEGUIDE 
 
Wave admittance is defined in terms of the transverse fields (10) and (11) as 
   

h = – ⋅
=
Y  e                                                                            (12) 

 

The generalized admittance dyadic, when at z = 0 and the coefficient being 0=nH , 
can be obtained from Equation (12) as 
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where 
=

tI is a transverse unit dyadic and 
==

×= IuJ z  is a 090  rotator. If 0=nH  at z = 0 from 

Equations (10) and (11), the corresponding TM admittance is 
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Similarly, when at z = 0, the coefficient being ,0=nE  the generalized expression for 
the dyadic admittance is 
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At points z = 0 and 
4
pz

λ
= , the dyadic admittance is equal to 
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( , respectively. It is clearly seen that at point z = 0 TE admittance is changed 

to TM admittance at 
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4. ADMITTANCE DETERMINATION FOR SOFT SURFACE WAVEGUIDE 
 
The wave admittance for chiral soft surface waveguide can be derived from the equation 

 

h = – ⋅
=
Y  (uz × e).                                                                                (15) 

 

It is possible to obtain the dyadic admittance from Equation (15) as  
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In the case when at z = 0 00 =H (that is, we have TM fields), from Equations (10) and 

(11) the wave admittance is 
==

−= tIkY
βη

1)0( .  After the distance 
4
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( , at which point dyadic admittance is changed to TE admittance. Similarly, 

when at z = 0 00 =E , the generalized expression for the dyadic admittance at point z is 
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If at z = 0 00 =E  (that is, we have TE fields), one obtains the expression 
==

−= tI
k

Y β
η
1)0(  for the TE admittance and 
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(  for the TM admittance. 

We follow a procedure similar to Vitanen’s [8-9] and it is not surprising to see the 
admittance dyadic for the propagating hybrid mode (i.e., TE and TM modes) transformed to an 
admittance dyadic of another hybrid mode with a proper length of the chiral SHS waveguides. 
 
5. CONCLUSION 

 
The admittance dyadics of the cylindrical corrugated chirowaveguides are calculated and 
analyzed for mode transformation. It is assumed that the depth of the corrugation in axial or 
transverse direction is a quarter wavelength. Due to small chirality parameters, there exists a weak 
coupling between eigenfields. It is shown that the propagating hybrid mode can be changed into 
another hybrid mode by using a chiral SHS waveguide of a proper length.  

In conclusion, the generalized dyadic admittance presented in this study for chiral SHS 
waveguides is obtained in a functional form. In doing so, it has been illustrated that the 
admittance can be used to describe the mode transforming effect of these kinds of waveguides in 
agreement with the impedance dyadic. 
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