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ABSTRACT 
 
In the framework of the piecewise homogeneous body model with the use of the three-dimensional 
geometrically nonlinear exact equations of the theory of elasticity, the method developed for the 
determination of the stress distribution in the unidirectional fibrous composites with locally curved fibres is 
used to investigate normal stresses acting along the fibers for the case where there exists the bond covering 
cylinder with constant thickness between fiber and matrix materials are considered The case for which the 
interaction between the fibres is not taken into account is studied. The numerous numerical results related to 
the stress distribution in considered body and the influence of geometrical nonlinearity to this distribution are 
obtained and interpreted.  
Keywords: Fibrous composite, local curving, covering material, geometrical nonlinearity, normal stresses. 
MSC number/numarası: 74B15, 74E10, 74D10.  
 
YEREL EĞRİLİKLİ ÖRTÜKLÜ LİF İÇEREN ELASTİK ORTAMDAKİ NORMAL GERİLMELER 
 
ÖZET 
 
Yerel eğrilikli lifler içeren tek yönlü lifli kompozitlerde gerilme yayılımının belirlenmesi için, parçalı 
homojen cisim modeli çerçevesinde elastisite teorisinin üç-boyutlu geometrik nonlineer kesin denklemleri 
kullanılarak geliştirilen yöntem, lif ile matris arasında sabit kalınlıklı bir sargının olması durumuna karşı gelen 
lif boyunca etki gösteren normal gerilmelerin araştırılmasında, lifler arasındaki etkileşimin ihmal edildiği 
durum için, kullanılmıştır. Geometrik nonlineeritenin bu gerilme değerlerine etkileri incelenmiş ve bunlarla 
ilgili çok sayıda sayısal sonuçlar verilmiştir. 
Anahtar Sözcükler: Lifli kompozitler, yerel eğrilik, sarılı malzeme, geometrik nonlineerite, normal 
gerilmeler. 
 
 

 
1. GİRİŞ 
 
Tek yönlü lifli kompozit malzemeler ile ilgili yapılan çalışmalardan [1-5], sözkonusu 
malzemelerdeki liflerin eğriliğinin malzemenin dizaynı aşamasındaki gereksinmelerden veya 
teknolojik aşamalarda ortaya çıktığı görülmektedir. Bu malzemeler çalışılırken, dizayn 
gereksiniminden ortaya çıkan eğrisellikler periyodik eğrilikler, teknolojik işlemler sırasında 
ortaya çıkanlar ise yerel eğrilikler olarak modellenirler. Buradan,  tek yönlü lifli kompozit 
malzemelerde gerilme-şekil değiştirme durumu araştırmalarında liflerin eğriliğini dikkate almanın 
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teorik ve uygulama açısından önemli olduğu farkedilmektedir. Bu amaçla [6]’da, parçalı homojen 
cisim modeli çerçevesinde, elastisite teorisinin üç boyutlu kesin denklemleri kullanılarak tek 
yönlü lifli kompozitlerde, yukarıda sözü edilen gerilme durumu araştırmaları için bir yöntem 
gösterilmiştir. Bu yöntem liflerin eğriliğinin periyodik olması durumunda uygulanmış ve buradan 
elde edilen sonuçlar [7]’de detaylı olarak  verilmiştir.  

[6]’da, lifler arasındaki etkileşimin ihmal edilebileceği kadar, lif yoğunluğunun düşük 
olduğu kabul edilmiştir. Lifler arasındaki etkileşimin incelenmesi amacı ile, bu yöntem [8]’de 
periyodik eğrilikli iki komşu lif olması durumuna geliştirilmiş ve ilgili sayısal sonuçlar 
verilmiştir. [9]’da ise, [6, 8] yöntemi geometrik nonlineerite durumuna geliştirilmiş ve sonsuz 
elastik ortamda periyodik eğrilikli tek ve iki komşu lif olması halindeki sayısal sonuçlar 
verilmiştir. 

Yukarıda anılan araştırmalar, tek yönlü lifli kompozitlerdeki liflerin eğriliğinin 
periyodik olması ile ilgilidir. Sözüedilen malzemedeki liflerin yerel eğrilikli olması durmuna ait 
az sayıda çalışma vardır [10, 12]. Bu araştırmalarda ise, lineer elastisite teorisi kullanılmış ve 
lifler arasındaki etkileşim ihmal edilerek modelleme oluşturulmuştur. Bilinen mekaniksel 
düşüncelere ve [9]’da elde edilen sonuçlara göre geometrik nonlineeritenin, liflerin eğriliğinden 
ortaya çıkan kendi kendini dengelemiş gerilme değerlerine önemli etkisi vardır. [13]’de [10-12] 
yöntemi geometrik nonlineeritenin de dikkate alınması durumuna geliştirilmiş ve sayısal sonuçlar 
verilmiştir. Ancak, elde edilen sayısal sonuçlar, sıfırıncı ve birinci yaklaşım çerçevesinde 
kalmıştır. [15]’de ise [13]’deki yöntem lif-matris arayüzeyinde normal gerilme değerlerinin ikinci 
yaklaşıma kadar elde edilmesine geliştirilmiş ve geometrik nonlineeritenin, lifin yerel 
eğriliğinden ortaya çıkan, kendi kendini dengelemiş normal gerilmelerin yayılımına etkisini 
gösteren çok sayıda sayısal sonuç verilmiştir. Bu çalışmada ise, yerel eğrilikli tek lif içeren 
sonsuz ortamdaki  normal gerilmeler, lif ile matris malzemeleri arasında kalınlığı sabit bir başka 
malzeme olması durumunda çalışılmıştır. Bu malzeme, lif ile matris malzemesi arasında bir geçiş 
malzemesi olabileceği gibi malzeme dizaynı gereği de yerleştirilmiş bir malzeme olabilir. 
Çalışmamızda, kompozit malzeme, yerel eğrilikli tek lif içeren sonsuz elastik cisim olarak 
modellenmiş ve lif, lifi saran malzeme olarak isimlendireceğimiz geçiş malzemesi ve matris 
malzemelerinin temas yüzeylerinde oluşan normal gerilmeler ve bu gerilmelere geometrik 
nonlineeritenin etkisi ile ilgili  çok sayıda sayısal sonuç sunulmuştur.  
 
2. PROBLEMİN FORMÜLASYONU 
 
Yerel eğrilikli sarılı tek lif içeren sonsuz elastik ortam şematik olarak Şekil 1’de gösterilmiştir. 
Çalışmamızda, lifin  yüzeyine dik  kesitlerinin lif  boyunca  değişmeyen  R yarıçaplı daire 
olduğunu, geçiş malzemesinin de şekilde gösterilen hRR1 =−  kalınlığının lif boyunca sabit 
olduğunu ve cismin, sonsuzda lif yönünde ( 3Ox  ( Oz ) yönünde) p yoğunluklu düzgün dağılmış 

normal kuvvetler etkisinde olduğunu varsayacağız. Şekil 1’ de gösterilen 321 xxOx  kartezyen, 
zOrθ  silindirik koordinat takımlarını ele alalım ve bu koordinatların Lagrange koordinatları 

olduklarını belirtelim. İncelemelerimizi lif, geçiş malzemesi ve matrisin farklı lineer elastik 
malzemelerden oluştuğunu varsayıp, sürekli ortamlar mekaniğinin kesin üç boyutlu geometrik 
nonlineer denklemlerini kullanarak yapalım. Lifin başlangıç küçük eğriliğini 
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Şekil 1. Malzemenin geometrik yapısı ve seçilen kordinatlar 
 

Lif ile lifi saran malzeme ara yüzeyini S1, lifi saran malzeme ile matris malzemesi ara 
yüzeyi S2 ile gösterirsek, bu yüzeylerin denklemlerini lif-en kesitinin sağladığı koşuldan 
yararlanarak  
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şeklinde elde ederiz. Burada 3t  ( ),(t3 +∞−∞∈ ) bir parametredir. (2) denkleminden yararlanarak 
ve bazı bilinen işlemleri yaparak Sk (k=1,2) yüzeylerinin birim dış normallerinin bileşenleri için 
aşağıdaki ifadeleri elde ediyoruz. 
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şeklindedir. İleride sırası ile life ve geçiş malzemesine ait olan büyüklükleri (2), (3) ve matrise 
(sonsuz elastik ortama) ait olan büyüklükleri ise (1) üst indisi ile göstereceğiz. Lif, geçiş 
malzemesi ve sonsuz elastik ortamda aşağıdaki alan denklemleri sağlanır.  
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kS  yüzeyleri üzerinde ideal temas koşullarının sağlandığını kabul ederek ve bu koşulları  
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biçiminde yazalım. Ele alınan durumda aşağıdaki sınır koşullarının sağlandığını varsayacağız. 
 

,zz)ij(0,p
qq r

)k(
ijr

)k(
zz ≠⎯⎯ →⎯⎯⎯ →⎯

∞→∞→
σσ  ∞→3x iken 0

dx
)x(d,)x(

3

3
3 →

δ
δ                          (7) 

 

İleride yapılacak araştırmalarda gerilme ve şekil değiştirme tansörlerinin fiziksel 
bileşenleri kullanılacaktır. Bu durumda 
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formüllerinden faydalanılmaktadır. Burada θθθθ z,rz,r,zz,,rr)ij( = , z,,r)i( θ=  dir. ijσ , ijε  ve 

ijσ , ijε  gerilme )(σ  ve şekil değiştirme )(ε  tansörlerinin ele alınan silindirik koordinat 
takımındaki kovaryant ve kontravaryant bileşenlerini, ui, ui’ler ise yer değiştirme (u) vektörünün 
bu koordinat takımındaki kovaryant ve kontravaryant bileşenlerini göstermektedir. (8) formülleri 
tansör ve vektörlerin fiziksel bileşenleri arasındaki ilişkileri göstermektedir. Bu formüllerdeki 
Hi’ler ise Lamé sabitleridir. Kısalık amacıyla bundan sonra fiziksel bileşenler için parantezler 
kullanılmayacaktır. Yukarıda verilen formüllerde tansör notasyonu kullanılmıştır. Bu notasyon 
ileride de kullanılacaktır. Bunun yanında altı çizili indislere göre toplam yapılmayacaktır. 

Böylece ele alınan problemin formülasyonu tamamlanmış olmaktadır. Problem, (5) 
denklemlerinin  (6) sınır koşulları çerçevesinde çözümüne getirilmiştir. 
 
3. ÇÖZÜM YÖNTEMİ 
 
Formülasyonu yapılan problemin incelenmesi için [4]’de verilmiş olan sınır-formu pertürbasyon 
yöntemi kullanılacaktır. Bu yönteme göre, aranan büyüklükler, yukarıda tanımlanan ε  
parametresine göre seri halde aranır. 
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Ayrıca Sk ara yüzeylerinin denklemlerini oluşturan (2) ve bu yüzeylerin birim 
normallerinin bileşenlerini gösteren (3) ifadeleri de ε ’nun serisi halinde aşağıdaki gibi 
yazılabilir. 
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bu ifadelerde yer alan ve kε ’ların katsayıları olan )t,(a 3k θ ,....., )t,(g 3k θ ’ler (2) ve (3)’den 
kolaylıkla elde edilebilir. (5)’den, (9)’daki her bir yaklaşım için ayrı ayrı sağlanan alan 
denklemleri elde edilir. Bu son ifadeleri (6)’ da yerine koyar ve rn , θn , zn ’lerin (10)’ daki 
ifadeleri kullanılırsa, bazı uzun ama bilinen işlemler sonucunda, (9)’daki her bir yaklaşım için 

Rr = ’de sağlanan temas koşulları elde edilir. Bu durumda k. temas koşuluna önceki k-1. 
yaklaşımların tümüne ait büyüklükler dahil olmaktadır. Şimdi sıfırıncı ve birinci yaklaşımlar için 
elde edilen uygun denklem takımlarının ve temas koşullarının ifadelerini ele alalım. 
 
Sıfırıncı Yaklaşım 
Sıfırıncı yaklaşım için (5) denklemlerinin sağlandığı açıktır. (6) koşulları Rr = ’ de sağlanan 
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ve temas koşulları  
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olarak elde ederiz. Böylece, problem sıfırıncı yaklaşım için, (11) denklemlerinin  (12) temas 
koşulları çerçevesinde çözümlenmesine indirgenmiş olur. 
 
Birinci Yaklaşım 
Yukarıda ifade edilen tüm varsayımlar dikkate alınırsa birinci yaklaşım için aşağıdaki denklemler 
sistemi elde edilir. 
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Birinci yaklaşım için (13), (14)’deki altı çizili terimler sıfır olacağından, söz konusu 
yaklaşım için alan denklemlerini aşağıdaki gibi yazabiliriz. 
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(15)-(16) denklemlerindeki büyüklüklerin hepsi, ilgili fiziksel bileşenleri ile 
verilmektedir. Yukarıdaki işlemleri (6) içinde tekrarlar ve yaptığımız kabulleri dikkate alırsak 
birinci yaklaşım için aşağıdaki temas koşullarını elde ederiz. 
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Böylece birinci yaklaşıma ait denklemler ve temas koşulları çıkarılmış olmaktadır. (18) 
denkleminde kullanılan fonksiyonların açık ifadeleri aşağıda verilmiştir. 
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Yapacağımız araştırmalar sıfırıncı ve birinci yaklaşım çerçevesinde olacağından alan 
denklemleri ve temas koşullarının ifadelerini sözünü ettiğimiz yaklaşımlar çerçevesinde yazmış 
olmakla yetineceğiz. Benzer işlemlerle diğer yaklaşımlar da elde edilebilir. 

Şimdi, yukarıda formülasyonu verilen sıfırıncı ve birinci yaklaşımlara ait sınır-değer 
problemlerinin çözümlerini elde edeceğiz. Sadelik için sırasıyla lif, geçiş malzemesi ve matris 
malzemelerinin )1()3()2( ve, υυυ Poisson oranlarının eşit olduğunu kabul edeceğiz. Bu durumda 
sıfırıncı yaklaşım için aşağıdaki çözümü elde ederiz 
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(20)’daki )3()2()1( EveE,E sırası ile matris, lif ve geçiş malzemelerinin elastisite modülleridir. 
Şimdi birinci yaklaşıma ait olan (15)-(18) probleminin çözümünü ele alalım. Yukarıda 

yapılan kabuller ve sıfırıncı yaklaşımın (20) çözümünün dikkate alınması ile (15) denklemleri  
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haline gelir. Bu denklemler, üç boyutlu lineerize edilmiş elastisite denklemleri ile çakışmaktadır. 
Benzer şekilde (16) denklemleri 
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olur. Sıfırıncı yaklaşım için elde edilen çözüm dikkate alınırsa birinci yaklaşıma ait (18) temas 
koşulları aşağıdaki gibi elde edilirler. 
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(23) denklemlerinin çözümü için (21)’i dikkate alarak aşağıdaki gösterilimi [14] kullanalım. 
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Buradaki ;ve )k()k( χψ fonksiyonları aşağıdaki denklemleri sağlarlar. 
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burada )k(
iξ  (k=1,2,3 ; i=1,2,3)’ler sabitler ve aşağıdaki şekilde belirlenirler. 
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Birinci yaklaşımla ilgili denklemlere ve bunları çözmek için kullanacağımız 
gösterilimlere 
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ile verilen üstel Fourier dönüşümü uygular, ilgili sınır koşullarındaki sağ taraf fonksiyonlarını da 
dikkate alarak (25) ile verilen diferansiyel denklemlerin Fourier dönüşümlü hallerini çözersek, bu 

yaklaşımların Fourier dönüşümlerinin değerlerini belirlerken kullanacağımız 
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bulunur. Burada )x(In  sanal argümanlı Bessel fonksiyonu ve )x(Kn  Macdonald 
fonksiyonlarıdır. (28) fonksiyonları, birinci yaklaşımın sınır-değer probleminde kullanılır ve 
böylece ulaşılacak lineer denklemler takımı çözülürse, ulaşılmak istenen gerilmelerin birinci 
yaklaşımının Fourier dönüşümlü değerlerini hesaplamaya yarayacak büyüklükler belirlenmiş olur. 
Asıl gerilme değerlerine ulaşmak için, örneğin 1),1(

rrσ  için aşağıda verilen ters Fourier dönüşümü 
uygulanır. 
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4. SAYISAL SONUÇLAR VE DEĞERLENDİRME 
 
[15]’de de olduğu gibi, birinci yaklaşımla ilgili olan lineer denklemler sistemi çözüldüğünde elde 
etmek istediğimiz gerilme büyüklüklerinin s Fourier parametresine bağlı Fourier Dönüşümlü 
değerleri bulunmuş olur. Gerçek değerlere ulaşmamız için kullanmamız gereken Ters Fourier 
Dönüşümündeki ∫

+∞

∞−
ds(.)  integral, büyüklüklerin tek veya çift olmalarından dolayı ∫
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0 ds(.)  
haline gelmiş olur. Bu integral  
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yaklaşımıyla çözülmüştür. N  ve *S  değerleri yakınsaklık kriteri ile belirlenmiş parametreler 

olmak üzere 0S0 = , *N SS = , olarak kullanılmıştır. Ayrıca ∫ +1i

i

S
S ds(.)  integralinin sayısal hesabı 

için 10 noktalı Gauss-Legendre sayısal integrasyon yöntemi kullanılmıştır Sayısal hesaplar için 
gerekli algoritmalar ve bunların FTN 77 programlama diliyle kodlaması tarafımızdan geliştirilmiş 
ve uygulanmıştır. 

Burada vereceğimiz sayısal sonuçlar ττσ  normal gerilmelere ait ve sıfırıncı ve birinci 
yaklaşım çerçevesinde elde edilen sonuçlar olacaktır. Bu gerilmeler, lif, lifi saran malzeme ve 
matris arakesit yüzeyleri olan kS  ( 2,1k = ) yüzeylerinin kτ teğet vektörleri doğrultusunda, lifin 
eksenine dik kesitlerinin kS  yüzeyleri üzerindeki noktalarında etki gösteren normal gerilmelerdir. 
Yerel eğriliğin ihmal edilmesi durumuna karşılık gelen 0=ε  halinde ττσ  gerilmeleri zzσ  ile 
çakışırlar. 

Sayısal sonuçlar için L/R=κ  ve Lh  parametrelerini tanımlayalım. Verilen sayısal 

sonuçlar 3.0)3()2()1( === υυυ , 07.0=ε , 0=θ  ve 50EE )1()2( =  değerleri kullanılarak elde 
edilmiştir. Geometrik nonlineeritenin gerilme yayılımına etkisini göstermek için 

)1(E/p=α parametresi kullanılmıştır. Ayrıca, yer darlığından dolayı, τ  teğet vektörü 
doğrultusundaki ττσ  normal gerilmeleri ile ilgili sayısal sonuçlar, ilgili ara yüzeyin yalnız bir 

malzeme üzerindeki değerleri hesaplanarak verilmiştir. Örneğin, p1),2(
ττσ  lif ile geçiş 

malzemeleri ara yüzeyi üzerindeki lif yönündeki değerleri gösterirken, p1),3(
ττσ  ise geçiş 

malzemesi ve matris ara yüzeyi üzerindeki geçiş malzemesi yönündeki değerleri ifade etmektedir.  
Şekil 2’de 3.0=κ , 0.1Lx3 = , 401EE )1()3( = ve 1m =  değerlerinde, çeşitli α ’lar 

için p1),2(
ττσ  ile Lh  arasındaki bağımlılığın tek lif durumuna yakınsaması görülmektedir. Bu 

şekilde, kesikli çizgiler ile gösterilen doğrular, aynı parametre değerlerinde sonsuz elastik 
ortamda sarılı olmayan yerel eğrilikli tek lif olması probleminde elde edilenleri [15] 
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göstermektedir. Buradan, geçiş malzemesinin kalınlığının arttırılması ile aynı parametre 
değerlerinde malzemenin sarılı olmayan yerel eğrilikli tek lif içermesi durumunda elde edilenlere 
ulaşıldığı gözlenmektedir. 
 

 
Şekil 2. 3.0=κ , 0.1Lx3 = , 401EE )1()3( = ve 1m =  değerlerinde, çeşitli α ’lar için 

p1),2(
ττσ  ile Lh  arasındaki bağımlılığın tek lif durumuna yakınsaması 

 
Şekil 3 ve 4’de ise 3.0=κ , 0.1Lx3 = , 40EE )1()3( = değerlerinde 3,2,1m =  için 

sırası ile p1),2(
ττσ ve p1),3(

ττσ  ile Lh  arasındaki bağımlılık ve geometrik nonlineeriteyi 

gösteren α ’nın buna etkisi gösterilmiştir.  Beklendiği gibi, 0Lh =  değerinde elde edilen sayısal 
sonuçların sarılı olmayan tek lif problemi için elde edilenlerle [15] çakıştığı gözlenmektedir. Yine 
aynı şekillerden, m parametresinin değerleri büyüdükçe ara yüzeylerdeki normal gerilme 
değerlerinin de mutlak değer olarak büyüdüğü ve geometrik nonlineeritenin etkisi olarak, α  
büyüdükçe her iki temas yüzeylerinde de normal gerilme değerlerinin çekme durumunda mutlak 
olarak arttığı, basınç durumunda mutlak olarak azaldığı izlenmektedir. Basınç durumunda, α  
değerlerinin, ilgili stabilite kaybı değerlerinden [2] küçük alındığını belirtelim.  
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Çizelge 1 ve 2’de 0.1Lx3 = , 1.0=κ , 2.0Lh =  için sırası ile p1),2(
ττσ ve p1),3(

ττσ  

normal gerilmelerinin çeşitli α , )1()3( EE  ve m’lerde değerleri verilmiştir. Buradan da m 

parametresi ile gerilme değerlerinin arttığı ve )1()3( EE  değeri arttıkça, basınç ve çekme 

durumlarında p1),2(
ττσ  değerleri mutlak olarak azalırken p1),3(

ττσ  değerlerinin mutlak olarak 
arttığı izlenmektedir. 
 

Çizelge 1. 0.1Lx3 = , 1.0=κ , 2.0Lh =  için p1),2(
ττσ ’nin çeşitli α , )1()3( EE  ve m’lerde 

değerleri 
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30 1.020 1.020 1.018 1.017 -1.019 -1.021 -1.024 -1.027 
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40 1.019 1.019 1.017 1.016 -1.018 -1.020 -1.023 -1.026 
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20 1.039 1.040 1.037 1.035 -1.039 -1.041 -1.046 -1.050 
30 1.038 1.038 1.034 1.032 -1.038 -1.039 -1.045 -1.050 

1 

40 1.036 1.036 1.033 1.030 -1.036 -1.038 -1.044 -1.049 
10 1.103 1.103 1.096 1.092 -1.103 -1.105 -1.114 -1.126 
20 1.100 1.099 1.092 1.087 -1.100 -1.103 -1.113 -1.126 
30 1.097 1.097 1.089 1.084 -1.098 -1.100 -1.112 -1.124 

3 

40 1.095 1.094 1.086 1.080 -1.095 -1.098 -1.111 -1.123 
 

Çizelge 2. 0.1Lx3 = , 1.0=κ , 2.0Lh =  için p1),3(
ττσ ’nin çeşitli α , )1()3( EE  ve m’lerde 

değerleri 
 

)1(Ep=α  

Çekme Basınç m 
)1(

)3(

E
E

510.5 −  310.5 −  210.3 − 210.5 − 510.5 −− 310.5 −− 210.3 −− 210.5 −−  

10 1.049 1.051 1.047 1.045 -1.047 -1.052 -1.057 -1.062 
20 1.057 1.057 1.052 1.049 -1.056 -1.059 -1.067 -1.074 
30 1.061 1.061 1.055 1.051 -1.060 -1.063 -1.072 -1.082 

0 

40 1.064 1.063 1.056 1.052 -1.063 -1.066 -1.076 -1.088 
10 1.091 1.094 1.088 1.084 -1.091 -1.097 -1.105 -1.114 
20 1.107 1.108 1.099 1.094 -1.107 -1.112 -1.124 -1.137 
30 1.116 1.115 1.105 1.099 -1.116 -1.120 -1.135 -1.152 

1 

40 1.121 1.120 1.109 1.102 -1.121 -1.125 -1.143 -1.164 
10 1.234 1.237 1.222 1.212 -1.234 -1.243 -1.264 -1.285 
20 1.273 1.272 1.252 1.239 -1.274 -1.281 -1.310 -1.342 
30 1.295 1.291 1.267 1.252 -1.295 -1.303 -1.339 -1.378 

3 

40 1.309 1.304 1.278 1.261 -1.309 -1.317 -1.359 -1.406 
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