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ABSTRACT

In the framework of the piecewise homogeneous body model with the use of the three-dimensional
geometrically nonlinear exact equations of the theory of elasticity, the method developed for the
determination of the stress distribution in the unidirectional fibrous composites with locally curved fibres is
used to investigate normal stresses acting along the fibers for the case where there exists the bond covering
cylinder with constant thickness between fiber and matrix materials are considered The case for which the
interaction between the fibres is not taken into account is studied. The numerous numerical results related to
the stress distribution in considered body and the influence of geometrical nonlinearity to this distribution are
obtained and interpreted.
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YEREL EGRILIKLI ORTUKLU LiF iCEREN ELASTIK ORTAMDAKI NORMAL GERILMELER
OZET

Yerel egrilikli lifler iceren tek yonlii lifli kompozitlerde gerilme yayiliminin belirlenmesi igin, parcali
homojen cisim modeli ¢ergevesinde elastisite teorisinin iig-boyutlu geometrik nonlineer kesin denklemleri
kullanilarak gelistirilen yontem, lif ile matris arasinda sabit kalinlikli bir sarginin olmas1 durumuna kars1 gelen
lif boyunca etki gosteren normal gerilmelerin arastirilmasinda, lifler arasindaki etkilesimin ihmal edildigi
durum i¢in, kullanilmistir. Geometrik nonlineeritenin bu gerilme degerlerine etkileri incelenmis ve bunlarla
ilgili cok sayida sayisal sonuglar verilmistir.

Anahtar Sézciikler: Lifli kompozitler, yerel egrilik, sarili malzeme, geometrik nonlineerite, normal
gerilmeler.

1. GiRiS

Tek yonli lifli kompozit malzemeler ile ilgili yapilan c¢aligmalardan [1-5], sozkonusu
malzemelerdeki liflerin egriliginin malzemenin dizayn: asamasindaki gereksinmelerden veya
teknolojik asamalarda ortaya c¢iktigi goriilmektedir. Bu malzemeler c¢alisilirken, dizayn
gereksiniminden ortaya ¢ikan egrisellikler periyodik egrilikler, teknolojik islemler sirasinda
ortaya ¢ikanlar ise yerel egrilikler olarak modellenirler. Buradan, tek yonli lifli kompozit
malzemelerde gerilme-sekil degistirme durumu arastirmalarinda liflerin egriligini dikkate almanin

"Sorumlu Yazar/Corresponding Autor: e-mail/e-ileti: kosker@yildiz.edu.tr, tel: (212) 449 17 29

223



R. Kosker, K. Simsek Sigma Vol./Cilt 25 Issue/Sayt 3

teorik ve uygulama agisindan énemli oldugu farkedilmektedir. Bu amagla [6]’da, parcali homojen
cisim modeli gergevesinde, elastisite teorisinin {i¢ boyutlu kesin denklemleri kullanilarak tek
yonlii lifli kompozitlerde, yukarida sozii edilen gerilme durumu arastirmalar igin bir yontem
gosterilmistir. Bu yontem liflerin egriliginin periyodik olmast durumunda uygulanmis ve buradan
elde edilen sonuglar [7]’de detayli olarak verilmistir.

[6]’da, lifler arasindaki etkilesimin ihmal edilebilecegi kadar, lif yogunlugunun disiik
oldugu kabul edilmistir. Lifler arasindaki etkilesimin incelenmesi amaci ile, bu yontem [8]’de
periyodik egrilikli iki komsu lif olmasi durumuna gelistirilmis ve ilgili sayisal sonuglar
verilmistir. [9]’da ise, [6, 8] yontemi geometrik nonlineerite durumuna gelistirilmis ve sonsuz
elastik ortamda periyodik egrilikli tek ve iki komsu lif olmasi halindeki sayisal sonuglar
verilmistir.

Yukarida anilan arastirmalar, tek yonli lifli kompozitlerdeki liflerin egriliginin
periyodik olmasi ile ilgilidir. Soziiedilen malzemedeki liflerin yerel egrilikli olmast durmuna ait
az sayida caligma vardir [10, 12]. Bu arastirmalarda ise, lineer elastisite teorisi kullanilmig ve
lifler arasindaki etkilesim ihmal edilerek modelleme olusturulmustur. Bilinen mekaniksel
diisiincelere ve [9]’da elde edilen sonuglara gore geometrik nonlineeritenin, liflerin egriliginden
ortaya cikan kendi kendini dengelemis gerilme degerlerine 6nemli etkisi vardir. [13]’de [10-12]
yontemi geometrik nonlineeritenin de dikkate alinmasi durumuna gelistirilmis ve sayisal sonuglar
verilmistir. Ancak, elde edilen sayisal sonuglar, sifirinci ve birinci yaklagim gergevesinde
kalmistir. [15]°de ise [13]’deki yontem lif-matris arayiizeyinde normal gerilme degerlerinin ikinci
yaklagima kadar elde edilmesine gelistirilmis ve geometrik nonlineeritenin, lifin yerel
egriliginden ortaya cikan, kendi kendini dengelemis normal gerilmelerin yayilimina etkisini
gosteren ¢ok sayida sayisal sonug verilmistir. Bu calismada ise, yerel egrilikli tek lif iceren
sonsuz ortamdaki normal gerilmeler, lif ile matris malzemeleri arasinda kalinlig1 sabit bir bagka
malzeme olmasi durumunda ¢alisilmigtir. Bu malzeme, lif ile matris malzemesi arasinda bir gecis
malzemesi olabilecegi gibi malzeme dizayni geregi de yerlestirilmis bir malzeme olabilir.
Calismamizda, kompozit malzeme, yerel egrilikli tek lif igeren sonsuz elastik cisim olarak
modellenmis ve lif, lifi saran malzeme olarak isimlendirecegimiz ge¢is malzemesi ve matris
malzemelerinin temas yiizeylerinde olusan normal gerilmeler ve bu gerilmelere geometrik
nonlineeritenin etkisi ile ilgili ¢ok sayida sayisal sonug¢ sunulmustur.

2. PROBLEMIN FORMULASYONU

Yerel egrilikli sarili tek lif igeren sonsuz elastik ortam sematik olarak Sekil 1’de gosterilmistir.
Caligmamizda, lifin yiizeyine dik kesitlerinin lif boyunca degismeyen R yarigapl daire
oldugunu, ge¢is malzemesinin de sekilde gosterilen R, —R =h kalmhgmin lif boyunca sabit

oldugunu ve cismin, sonsuzda lif yoniinde (Ox; (Oz) yo6niinde) p yogunluklu diizgiin dagilmis
normal kuvvetler etkisinde oldugunu varsayacagiz. Sekil 1’ de gosterilen Ox,x,x; kartezyen,

Oréz silindirik koordinat takimlarii ele alalim ve bu koordinatlarin Lagrange koordinatlari
olduklarim belirtelim. Incelemelerimizi lif, gecis malzemesi ve matrisin farkl lineer elastik
malzemelerden olustugunu varsay1p, siirekli ortamlar mekaniginin kesin ii¢ boyutlu geometrik
nonlineer denklemlerini kullanarak yapalim. Lifin baslangi¢ kiigiik egriligini

2 2
X, = Aexp[— (%) ]cos[m%} = gLexp[— (%) ]cos[m%} =ed(x5); € :% (1)

seklinde verelim. Buradaki & parametresi, L > A kabuliiile = % (0<e<1) dir.
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Sekil 1. Malzemenin geometrik yapisi ve secilen kordinatlar

Lif ile lifi saran malzeme ara yiizeyini Sy, lifi saran malzeme ile matris malzemesi ara
yiizeyi S, ile gosterirsek, bu yiizeylerin denklemlerini lif-en kesitinin sagladigi kosuldan
yararlanarak

= (1+£2(3'(t))2sin0 )] {(eB(ts) + £%6(t,)(3'(t5 ) sind +

[2_2 2 dgsr W2 (s z( 2 s 2);~2F
R%—e7((t;))” —&" (8'(t3))"(8(t5)) "\l + &7 (8'(t5))” pin~6

d§(t )

3

= t, —&8'(ty)r(ty )sind + £28(t)3'(ty),  O(t;) =

7 = @

seklinde elde ederiz. Burada t; (t; € (—o0,+) ) bir parametredir. (2) denkleminden yararlanarak

ve bazi bilinen islemleri yaparak Sy (k=1,2) yiizeylerinin birim dis normallerinin bilesenleri i¢in
asagidaki ifadeleri elde ediyoruz.

82(9 t;) ' 2(0,t) ar(6,t;)  dr(6,t;) 32(6, g} .
C=1(0,t,) 22 A0, ) A6,1;)
=101 LV @] 0, | HEDTOL) TODZO) [y,
n, = —r(@t;)@we,uﬂ*‘ . )

t3
Burada
2
[A(e,g)]{[r(e t3}az(e t3)J (az(e,t3) an0.t;)  oz(6.t;) 8r(9,t3)J .
ot o ot o, o9
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1/2

62(9,t3)]2 @

3

[r(&, ts)

seklindedir. Tleride sirasi ile life ve gecis malzemesine ait olan biiyiikliikleri (2), (3) ve matrise
(sonsuz elastik ortama) ait olan biiyiikliikleri ise (1) iist indisi ile gOsterecegiz. Lif, gegis
malzemesi ve sonsuz elastik ortamda asagidaki alan denklemleri saglanir.

v, [O.(k)in (gﬂ] +Vnu®j)] 0, 260 =Vu® 4V, 0l + VY y®©

(k) _ 4(k),(k) (k) (k) (k) _ (k) (k) (k)
Oy = AWk o +2u'* Eim > € = &) T E(op) T Eim) %)
Sy yiizeyleri lizerinde ideal temas kosullarinin saglandigini kabul ederek ve bu kosullar

®)in (j (k)] _ ~3)in( 3)j (k) N )] _
A e R TR ©

bi¢iminde yazalim. Ele alinan durumda asagidaki sinir kosullarinin saglandigini varsayacagiz.

o) ———p, o) ———0 (i) #zz, [x5| >0 iken [3(x)], —dii’%) -0 @)
— -

fleride yapilacak arastirmalarda gerilme ve sekil degistirme tansorlerinin fiziksel
bilesenleri kullanilacaktir. Bu durumda

. 1 1 ; ) 1
— — - =gV =u' =
on=0'HH.=0. ——, ¢, =¢.——=¢"H.H., u,,=u'H, =u, —
(ij) it7j ij > < (i) ij i () i i ’
H Hj HiHj H;

i

®)

formiillerinden faydalanilmaktadir. Burada (ij) =rr,06,zz,v0,1z,20 , (i) =r,0,z dir. oV, & ve

oji, &; gerilme (o) ve sekil degistirme (g) tansorlerinin ele alman silindirik koordinat

takimindaki kovaryant ve kontravaryant bilesenlerini, u', u;’ler ise yer degistirme (u) vektoriiniin
bu koordinat takimindaki kovaryant ve kontravaryant bilesenlerini gostermektedir. (8) formiilleri
tansor ve vektorlerin fiziksel bilesenleri arasindaki iligkileri gostermektedir. Bu formiillerdeki
Hy’ler ise Lamé sabitleridir. Kisalik amaciyla bundan sonra fiziksel bilesenler i¢in parantezler
kullanilmayacaktir. Yukarida verilen formiillerde tansér notasyonu kullanilmigtir. Bu notasyon
ileride de kullanilacaktir. Bunun yaninda alt1 ¢izili indislere gore toplam yapilmayacaktir.

Boylece ele alman problemin formiilasyonu tamamlanmis olmaktadir. Problem, (5)
denklemlerinin (6) sinir kosullart ¢ergevesinde ¢éziimiine getirilmistir.

3. COZUM YONTEMI

Formiilasyonu yapilan problemin incelenmesi i¢in [4]’de verilmis olan sinir-formu pertiirbasyon
yontemi kullanilacaktir. Bu ydnteme gore, aranan biyiikliikler, yukarida tamimlanan &
parametresine gore seri halde aranir.

o0 o0 o0
o =Y glgha gl =Y ggla o y® =3 gaytoa 9)
q=0 q=0 q=0

Ayrica Sy ara yiizeylerinin denklemlerini olusturan (2) ve bu ylizeylerin birim
normallerinin bilesenlerini gosteren (3) ifadeleri de & 'nun serisi halinde asagidaki gibi
yazilabilir.
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r=R+ zgkak(9=t3) , Z=13+ ngbk(9=t3) )

k=1 k=1
n, =1+ Y% (0,1;) , ny = Y£°dy (0,15), n, = &g, (6,1;) (10)
k=1 k=1 k=1

bu ifadelerde yer alan ve &* ’larin katsayilari olan 2, (6,t3) ,.ee, £ (6,15) ’ler (2) ve (3)’den

kolaylikla elde edilebilir. (5)’den, (9)’daki her bir yaklagim icin ayri ayri saglanan alan
denklemleri elde edilir. Bu son ifadeleri (6)’ da yerine koyar ve n,, n,, n,’lerin (10)’ daki

ifadeleri kullanilirsa, bazi uzun ama bilinen islemler sonucunda, (9)’daki her bir yaklasim i¢in
r=R ’de saglanan temas kosullart elde edilir. Bu durumda k. temas kosuluna onceki k-1.
yaklagimlarimn tiimiine ait biiyiikliikler dahil olmaktadir. Simdi sifirinct ve birinci yaklasimlar i¢in
elde edilen uygun denklem takimlarinin ve temas kosullarinin ifadelerini ele alalim.

Stfirinci Yaklasim
Sifiriner yaklasim icin (5) denklemlerinin saglandigi agiktir. (6) kosullari r=R ’ de saglanan

(k)j,0 (k)j,0

aynilart ile yer degistirirler. V u <<1 oldugunu kabul edecegiz. Boylece gf] +V,u

terimleri 5‘{ ile yer degistirirler. Burada 6{; Kronecker sembolleridir. Bu kabule gore sifirinct

yaklagima ait denklemler takimi
V.o®i0 — 25_(_1@,0 :V_ugk),o +Viuj»k)’°, O_(k)O (AW 1 2(u W ((11;))0)

() Z 200 L (00 (k)0 (11

€ _E(n) +8(g) +g(zz)

ve temas kosullari

k),0 3),0 k),0 3),0 . :
G((ij)) r=R = ((11)) r=R> gl)) r=R = ugl)) r=R> k= 192’ (1.]) = rr,ré,rz, (1) = r,:9,z, q= 192 (12)

olarak elde ederiz. Boylece, problem sifirinct yaklagim igin, (11) denklemlerinin (12) temas
kosullart ¢ergevesinde ¢dzlimlenmesine indirgenmis olur.

Birinci Yaklagim
Yukarida ifade edilen tiim varsayimlar dikkate alinirsa birinci yaklasim i¢in asagidaki denklemler
sistemi elde edilir.

" . : q-! . .
v, [G(k)lJ»q + O—(k)lﬂvovnu(k)bo ]: _ Zvj (O.(li)m,Q*mVnu(k)J:m) , (13)
m=]

2699 =V 91 v uloa +zv ulnasy g s (14)

s=l1

Birinci yaklagim i¢in (13), (14)’deki alt1 ¢izili terimler sifir olacagindan, s6z konusu
yaklasim i¢in alan denklemlerini asagidaki gibi yazabiliriz.

K)ij.1 (k)in,0 (k)j,0 |

V,|o®it 1 gty y®io|_g (15)

268" =V 4 vl (16)
k),1 k) (k k) (k)1 k)l _ (k)1 k)1 k),1

ol =A™ +2(uVel)!y, e =gl el + el (17)

(15)-(16) denklemlerindeki biiyiikliiklerin hepsi, ilgili fiziksel bilesenleri ile
verilmektedir. Yukaridaki iglemleri (6) icinde tekrarlar ve yaptigimiz kabulleri dikkate alirsak
birinci yaklagim i¢in asagidaki temas kosullarini elde ederiz.
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or 0z

k,0 k,0
ou, ¢ ou. Te
[um};’,l +1] {—()} + o {—“} =0, k=12 (18)

5 or 3,0 oz 3,0

PU U PO )
[O'(i)rk;l] + f{ oo } + (/{&} +7 [O'(i)rk’g +7 [O'(i)o ES +7, [O'(i)z ]'fff =0
3.0 3.0

Boylece birinci yaklagima ait denklemler ve temas kosullar1 ¢ikarilmis olmaktadir. (18)
denkleminde kullanilan fonksiyonlarin agik ifadeleri asagida verilmistir.

ok =™ -0, k=12,

dé(ty) S(ty)  d*8(ty) S(ty) .
fi=0(t 0, ¢ =-R—3cos6, y,=| —2———3R 0, yy=——"2sin6,
1 =0(t;)cosb , ¢ at, cos@, y, [ R e cosd, y, R sin
do(t,)
=————=-cosf . 19
Vs a, (19)

Yapacagimiz arastirmalar sifirinct ve birinci yaklasim gergevesinde olacagindan alan
denklemleri ve temas kosullarinin ifadelerini séziinii ettigimiz yaklagimlar ¢ercevesinde yazmis
olmakla yetinecegiz. Benzer islemlerle diger yaklagimlar da elde edilebilir.

Simdi, yukarida formiilasyonu verilen sifirinci ve birinci yaklagimlara ait sinir-deger
problemlerinin ¢oziimlerini elde edecegiz. Sadelik icin sirastyla lif, gecis malzemesi ve matris

malzemelerinin 0@, v® ve v Poisson oranlarimin esit oldugunu kabul edecegiz. Bu durumda
stfirinci yaklagim igin asagidaki ¢oziimii elde ederiz

@0 _ E® 30 E®

10,0 _ — 2.0 _ .30 _ .mo __P 0,0 _ _,, 1) (1,0
Oz =p, Oy _pW’ Oy _pW’ €z =&z - - u ==V ‘921 r,

z =pm e U

u£2),0 _ _V(Z)gg),or i u(r3),0 _ —v(3)5$’)’0r ugz),o _ u(za),o —gmo__ P S0 _ mo_g ,

> z E(l) > Mij —Mij

(ij)=rr, 16, Oz, 1z (20)

(20y’daki E®,E® ve E® sirast ile matris, lif ve ge¢is malzemelerinin elastisite modiilleridir.

Simdi birinci yaklagima ait olan (15)-(18) probleminin ¢6ziimiinii ele alalim. Yukarida
yapilan kabuller ve sifirinci yaklagimin (20) ¢6ziimiiniin dikkate alinmas ile (15) denklemleri

oo™l 1 gl 55k oty ®il
s ar; + 2% +_(UI<T@,1 _ C,%),l) oo =0,
T Z T Z
PPN P R S (SN PUR(SN
w (190w 00u" 2 001, G0 ll
or r 06 0z r 0z
3 (.1 (.1 2,01
oy~ 1004~ 00" 1 i, j0008 " @1
1z 7z 2 Vo
or r 00 oz r 0z

haline gelir. Bu denklemler, ii¢ boyutlu lineerize edilmis elastisite denklemleri ile ¢akismaktadir.
Benzer sekilde (16) denklemleri

ou®il 11 ou®r  gp®l &l 1{ ou®!l  gy®il
Sék)’l — arr S(k)’l —_ r + 0 ___ 0 , g(k),l - z + r A

’ Y Tolr 00 ar r = Tl or oz

- + , Tz 22
v r r o 2 oz 22)

k)l k)l k)1 k).l k)l
N _laufi) US’) 01 :l 811(9’) 1 au([) 2001 _ au([)
00 oz r 00 )"
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olur. Sifirinc1 yaklagim i¢in elde edilen ¢oziim dikkate alinirsa birinci yaklagima ait (18) temas
kosullar1 agagidaki gibi elde edilirler.
do(t,)

[Grr l3(,11 =0 s [O-rﬂ] _0 [O-rz 3,1 _( o0 O-g)’ol(R,H,g )T;COSQ 5

[o.Fi =0, fuoki =0, [wfi=0. K12 (23)
(23) denklemlerinin ¢dziimii i¢in (21)’1 dikkate alarak asagidaki gosterilimi [14] kullanalim.

2 2
w019 w00 . w0 w10

Ym0 az” Y T T rotez”

w0 = (2 4 0y (20 40,007 +(ﬂ<g>+o_<k>,0)i PO _6_2+1 0,12 24)
‘ ! 7 o7 G BRPYE ISPy

Buradaki ™ ve y™; fonksiyonlar: asagidaki denklemleri saglarlar.

(A(lk) (51 ) — j‘{’“‘) 0’(&11() (52 ) 6: ]( (émj 6: Jl(k)—(), 25)

burada éi(k) (k=1,2,3 ; i=1,2,3)’ler sabitler ve agagidaki sekilde belirlenirler.

k k),0 k k),0 k k)0
© #<>+O_() w #()Jro_() ©_ [AY +24 4 5%
I CEE R CET Y

; (26)

Birinci yaklagimla ilgili denklemlere ve bunlari ¢dzmek igin kullanacagimiz
gosterilimlere

£(s) = Tf(z)e*i“dz @27

ile verilen {istel Fourier doniisiimii uygular, ilgili sinir kosullarindaki sag taraf fonksiyonlarin1 da
dikkate alarak (25) ile verilen diferansiyel denklemlerin Fourier doniisiimlii hallerini ¢ozersek, bu

—(k),1 —(k),1
yaklagimlarin Fourier doniisiimlerinin degerlerini belirlerken kullanacagimiz y/( - R ;(( - ve

s

—(k)2 —(k).2 . o Lo . .
74 fonksiyonlarimi asagidaki gibi belirleriz.

71)’1 ~Ay (8K, (cfl(l)si) sin @

70 1_1[A2 G)K, (§<l>s—)+A3 K, (é(l)s—)}cosﬂ
v AP ) (§<2>s—)sin9,
[A S (EPs S )+A3 (s)I (5(2)5—)}0059

SO _ [A?)(S)I (g%—)+§§”(s)K1(§f”sf>}sin9

7/3)1“{/*(3)@)1 (GRA r)+A S (EDs r)+B $)K, (EDs r)+Bs (K, (é‘”s—ﬂ“’se (28)
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bulunur. Burada I (x) sanal argiimanli Bessel fonksiyonu ve K, (x) Macdonald
fonksiyonlaridir. (28) fonksiyonlari, birinci yaklagimin siir-deger probleminde kullanilir ve
bdylece ulagilacak lineer denklemler takimi ¢oziiliirse, ulasilmak istenen gerilmelerin birinci
yaklagiminin Fourier doniisiimlii degerlerini hesaplamaya yarayacak biiytikliikler belirlenmis olur.
.1

Asil gerilme degerlerine ulasmak igin, drnegin o,

i¢in agagida verilen ters Fourier doniisimii
uygulanir.
651),1 _ -“Er(rl),leiszds (29)

1+
Y

0

4. SAYISAL SONUCLAR VE DEGERLENDIiRME

[15]°de de oldugu gibi, birinci yaklagimla ilgili olan lineer denklemler sistemi ¢oziildiigiinde elde
etmek istedigimiz gerilme biiyiikliklerinin s Fourier parametresine bagli Fourier Doéniistimlii
degerleri bulunmus olur. Gergek degerlere ulagsmamiz igin kullanmamiz gereken Ters Fourier

Dontisiimiindeki j'jz(.)ds integral, biiyilikliklerin tek veya ¢ift olmalarindan dolay1 _[0+ “()ds

haline gelmis olur. Bu integral
;(ds= [ ()d —ifs‘”()d (30
o (Mds=|()ds= 2k ¢ S )

yaklasimiyla ¢oziilmiistir. N ve S. degerleri yakinsaklik kriteri ile belirlenmis parametreler

i+l

olmak tizere S, =0, Sy =S., olarak kullanilmistir. Ayrica J'SS (.)ds integralinin sayisal hesabi

icin 10 noktali Gauss-Legendre sayisal integrasyon yontemi kullanilmistir Sayisal hesaplar igin
gerekli algoritmalar ve bunlarin FTN 77 programlama diliyle kodlamasi tarafimizdan gelistirilmis
ve uygulanmustir.

Burada verecegimiz sayisal sonuglar o . normal gerilmelere ait ve sifirinci ve birinci
yaklasim gergevesinde elde edilen sonuglar olacaktir. Bu gerilmeler, lif, lifi saran malzeme ve
matris arakesit yiizeyleri olan S, (k =1,2) yiizeylerinin T, teget vektorleri dogrultusunda, lifin

eksenine dik kesitlerinin S, ylizeyleri iizerindeki noktalarinda etki gdsteren normal gerilmelerdir.

Yerel egriligin ihmal edilmesi durumuna karsilik gelen €=0 halinde o . gerilmeleri o, ile

T
cakisirlar.

Sayisal sonuglar igin x=R/L ve h/L parametrelerini tammlayalim. Verilen sayisal
sonuglar 0V =@ =p® =03, £=0.07, =0 ve E(z)/E“) =50 degerleri kullanilarak elde
edilmistir. Geometrik nonlineeritenin  gerilme yayilimma etkisini gostermek i¢in
a =p/EY parametresi kullanilmistir. Ayrica, yer darligindan dolay, T teget vektorii
dogrultusundaki o, normal gerilmeleri ile ilgili sayisal sonuglar, ilgili ara yiizeyin yalniz bir
@) /|p| lif ile gecis

malzemeleri ara yiizeyi iizerindeki lif yoniindeki degerleri gosterirken, o /|p| ise gecis

malzeme iizerindeki degerleri hesaplanarak verilmistir. Ornegin, o

malzemesi ve matris ara yiizeyi lizerindeki gecis malzemesi yoniindeki degerleri ifade etmektedir.
Sekil 2°de =03, x,/L=1.0, E?/E® =1/40 ve m=1 degerlerinde, gesitli a ’lar

)1
112

icin o / |p| ile h/L arasindaki bagimlhiligi tek lif durumuna yakinsamasi gdriilmektedir. Bu

sekilde, kesikli ¢izgiler ile gosterilen dogrular, ayn1 parametre degerlerinde sonsuz elastik
ortamda sarili olmayan yerel egrilikli tek lif olmasi probleminde elde edilenleri [15]
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gostermektedir. Buradan, gecis malzemesinin kalinhigmnin arttirilmast ile ayni parametre
degerlerinde malzemenin sarili olmayan yerel egrilikli tek lif icermesi durumunda elde edilenlere
ulasildig1 gézlenmektedir.

(2).1 2).1
(S /Ipl Orr /Ipl
1.12 4 -1.06 —
. -1.08 —
1.1 - :
- 1.1 —H
1.08 — 7
_ -1.12 —
1.06 ,,,,||||||||||||||||||||h/L ||||||||||||||||||||||||h/L
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 2.5

Sekil 2. k=03, x;/L=1.0, E(3)/E(1) =1/40 ve m=1 degerlerinde, gesitli o ’lar i¢in

o-if)’l / |p| ile h/L arasindaki bagimhiligin tek lif durumuna yakinsamast

Sekil 3 ve 4’de ise k=0.3, x3/L=1.0, E(3)/E(l) =40 degerlerinde m=1,2,3 igin

sirast ile o /|p| ve ot /|p| ile h/L arasindaki bagimhihk ve geometrik nonlineeriteyi

gosteren o *nin buna etkisi gosterilmistir. Beklendigi gibi, h/L =0 degerinde elde edilen sayisal
sonuglarin sarilt olmayan tek lif problemi i¢in elde edilenlerle [15] ¢akistigi gozlenmektedir. Yine
ayni sekillerden, m parametresinin degerleri biiyiidiik¢e ara ylizeylerdeki normal gerilme
degerlerinin de mutlak deger olarak biiyiidiigii ve geometrik nonlineeritenin etkisi olarak, |OL|
biiyiidiikce her iki temas yiizeylerinde de normal gerilme degerlerinin ¢ekme durumunda mutlak
olarak arttig1, basing durumunda mutlak olarak azaldif: izlenmektedir. Basing durumunda, o
degerlerinin, ilgili stabilite kayb1 degerlerinden [2] kiigiik alindigin1 belirtelim.
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2.1

o/ Ipl
1.06 —
B 1.004 —
_ 1
1.04 — E
7] 0.996
— 0992
1.02 — 7
i TTTT T T T T TTITT
- 01 02 03 04
1_
_|||||||||||||||||||||||| h/L
0 0.2 0.4 0.6 0.8 1
2),1
S /lpl
1.12 —
. 1.006
B 1.004 R
1.08 — =510
- 1.002 | ges.10” a:sllo"
'
T =5.10""
i 1 |- |
1.04 4 0.998
T 02 025 03 035 04
1_
TTT T[T T T T[T T T T[T T TT TTTT h/L
0 0.2 0.4 0.6 0.8 1
2),1
o /Il
1.3
N 3 —a=s.10"
] 1036 —=5.10"
12 - —a=5.10"
i 1.032 5
i = [
q w300
- 1.028 o
= = a=5'10"
11— TT T T T T 1T
. 016 018 02
TTT T[T T T T[T T T T [ TTTT[TTTT h/L
0 0.2 0.4 0.6 0.8 1

(@

(b)

(©

2.1
G'[T
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/pl

-0.99 —

-1.02 —

-1.054

-1.08 —

O L L L h/L
0 0.2 0.4 0.6 0.8 1
5107 |
a=-5.
R a—s.10°]
(¥
a=-5.10
TTTTT T 7TTITT
02 03 04
LN UL L L L h/L
0 0.2 0.4 0.6 0.8 1
2,1
o/ Ipl
.11_
B a=-5.10
7] a=-5.10 =
-1.2— =
. 1,036 s
i = — =510
] 104 — —a=3.10"
-1.3 3 — -a=s10"
TT T T [T TTT
016 018 02
-1.4
[T T T T T[T T T[T rrTT h/L
0 0.2 0.4 0.6 0.8 1

Sekil 3 k=03, x;/L=1.0, E¥/E" =40 degerinde, cesitli o "lar igin 2" /|p| ile h/L
arasindaki bagimlilik (a)m =0, (b) m=1,(c) m=3
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[

1.06

1.04

1.02

O

112

11

1.08

1.06

1.04

(3),1

1T

/Ipl

0.1 0.2 03 0.4

h/L

0

(3).1

TT

LIS I I
0.2 0.4 0.6 0.8

/lpl

1

h/L

TTTTTTTTITT T IT o oaTT
02 025 03 035 04

0

1.28

1.24

1.2

1.16

Sekil4 =03, x;/L=1.0, E(3)/E(1) =40 degerinde, cesitli o ’lar i¢in o

LI I I I O
0.2 0.4 0.6 0.8

[Pl

12

TTTTTTTTTTTTTT
0.1 0.2 0.3 0.4

0

0.2 0.4 0.6 0.8

1

h/L
1

h/L

°
©
8

-1.04 | i
1
/o s
108 TTTT TTT T TTTT
01 02 03 04
frrrr e ik
0 0.2 0.4 0.6 0.8 1
(a)
(3).1
o /lpl
-1.04 —
-1.08 —
. |
] a=500" |
-1.12— AT
E 7 0="5.10"
] TTTTT T TTTT
] 02 03 04
-1.16
_|||||||||||||||||||||||| h/L
0 0.2 0.4 0.6 0.8 1
(b)
(3).1
o /Ipl
-1.2 4
-1.3 4
TTTT T IT TTTT
E 01 02 03 04
1.4 —
T hik
0 0.2 0.4 0.6 0.8 1
(c)
= /|p| ile h/L

arasindaki bagimlilik (a)m =0, (b) m=1,(c) m=3
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Cizelge 1 ve 2°de x5/L=1.0, x=0.1, h/L=0.2 i¢in sirasi ile Ug)’l/|p| ve O'S)’l/|p|
normal gerilmelerinin ¢esitli o , Em/ E® ve m’lerde degerleri verilmistir. Buradan da m

parametresi ile gerilme degerlerinin arttigi ve Em/ E®  degeri arttikga, basing ve ¢ekme
(2).1 31

T T

durumlarinda o / |p| degerleri mutlak olarak azalirken o /|p| degerlerinin mutlak olarak

arttig1 izlenmektedir.
Cizelge 1. x;/L=1.0, x=0.1, h/L=0.2 i¢in o-if)’l/lpl nin gesitli ., EY/EV ve m’lerde
degerleri
a=p/EY
E®

m W Cekme Basing

5.107°[5.10°]3.102[5.102 | -5.10° | =5.107 [ -3.102| =5.1072

10 | 1.023 ] 1.023 | 1.021 | 1.020 | -1.022 | -1.023 | -1.026 | -1.028

o |20 | 1.021 ] 1.021 | 1.019 ] 1.018 | -1.020 | -1.022 | -1.025 | -1.027
30 {1.020 | 1.020 | 1.018 | 1.017 | -1.019 | -1.021 | -1.024 | -1.027
40 ] 1.019 ] 1.019 | 1.017 | 1.016 | -1.018 | -1.020 | -1.023 | -1.026
10 | 1.042 ] 1.043 | 1.039 | 1.038 | -1.042 | -1.043 | -1.047 | -1.051
20 | 1.039 ] 1.040 | 1.037 | 1.035 [ -1.039 | -1.041 | -1.046 | -1.050
30 [ 1.038 | 1.038 | 1.034 | 1.032 | -1.038 | -1.039 | -1.045 | -1.050
40 ] 1.036 | 1.036 | 1.033 | 1.030 [ -1.036 | -1.038 | -1.044 | -1.049
10 | 1.103 ] 1.103 | 1.096 | 1.092 | -1.103 | -1.105 | -1.114 | -1.126
20 | 1.100 | 1.099 | 1.092 | 1.087 { -1.100 | -1.103 | -1.113 | -1.126
30 [ 1.097 | 1.097 | 1.089 | 1.084 | -1.098 | -1.100 | -1.112 | -1.124
40 ] 1.095] 1.094 | 1.086 | 1.080 [ -1.095 | -1.098 | -1.111 | -1.123

Cizelge 2. x;/L=1.0, «=0.1, h/L=0.2 i¢in crif)’l/lpl nin gesitli ., EY/EV ve m’lerde
degerleri

a=p/E"

E(3)
m W Cekme Basing

5.107° [5.1073]3.102 [ 5.102 | =5.10° |-5.103| =3.10% | =5.1072
10 | 1.049 | 1.051 | 1.047 | 1.045 | -1.047 | -1.052 | -1.057 | -1.062

0 .20 [ 1.057 | 1.057 ] 1.052 ] 1.049 | -1.056 | -1.059 | -1.067 | -1.074
30 | 1.061 [ 1.061 | 1.055 | 1.051 | -1.060 [ -1.063 | -1.072 | -1.082
40 | 1.064 | 1.063 | 1.056 | 1.052 | -1.063 | -1.066 | -1.076 | -1.088
10 | 1.091 | 1.094 | 1.088 | 1.084 | -1.091 | -1.097 | -1.105 | -1.114
20 | 1.107 | 1.108 | 1.099 | 1.094 | -1.107 | -1.112 | -1.124 | -1.137
30 | 1.116 | 1.115 | 1.105 ] 1.099 | -1.116 | -1.120 | -1.135 | -1.152
40 | 1.121 | 1.120 | 1.109 | 1.102 | -1.121 | -1.125 | -1.143 | -1.164
10 | 1.234 [ 1.237 | 1.222 | 1.212 | -1.234 | -1.243 | -1.264 | -1.285
20 | 1.273 | 1.272 ] 1.252 | 1.239 | -1.274 | -1.281 | -1.310 | -1.342
30 | 1.295 | 1.291 | 1.267 | 1.252 | -1.295 [ -1.303 | -1.339 | -1.378
40 | 1.309 | 1.304 | 1.278 | 1.261 | -1.309 | -1.317 | -1.359 | -1.406
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