Journal of Engineering and Natural Sciences Sigma 27,
Miihendislik ve Fen Bilimleri Dergisi 118-128,
2009
Research Article / Arastirma Makalesi
A NEW 2+1-DIMENSIONAL HAMILTONIAN INTEGRABLE SYSTEM

Devrim YAZICI*

Yildiz Teknik Universitesi, Fen-Edebiyat Fakiiltesi, Fizik Bolimii, Esenler-ISTANBUL

Received/Gelis: 21.01.2009 Revised/Diizeltme: 13.05.2009 Accepted/Kabul: 15.05.2009

ABSTRACT

It is shown that a new 2+1-dimensional second-order partial differential equation, when written as a first-order
nonlinear evolutionary system, admits bi-Hamiltonian structure. Therefore, by Magri’s theorem it is a
completely integrable system. For this system a Lagrangian is introduced and Dirac’s theory is applied in
order to obtain first Hamiltonian structure. Then recursion operator is constructed and finally the second
Hamiltonian structure for this system is obtained. Jacobi identity for the Hamiltonian structure is proved by
using Olver’s method. Thus, it is an example of a completely integrable system in three dimensions.
Keywords: Integrable systems, Hamiltonian integrable systems.

PACS numbers/numaralari: 04.20.Jb, 02.40.Ky.

2+1 BOYUTTA YENI INTEGRE EDIiLEBILiR HAMILTONIAN SiSTEMLER
OZET

Yeni 2+1 boyutlu ikinci mertebeden kismi tiirevli diferansiyel denklem, birinci mertebe lineer olmayan
degisim sistemi olarak yazildiginda, bu yeni sistemin bi-Hamiltonian yapiya sahip oldugu gosterilmistir.
Boylece Magri teoremine gore tamamen integere edilebilir bir sistem elde edilmistir. Bu sistem igin
Lagrangian elde edilmis, ve birinci Hamiltonian yapiy1 elde etmek i¢in Dirac teori uygulanmistir. Sistem i¢in
tekrarlama (recursion) operatorii kurulmus ve son olarak ikinci Hamiltonian yap1 elde edilmistir. Hamiltonian
yapilar igin Jacobi 6zdesligi Olver’in metodu kullanilarak ispatlanmistir. Boylece yeni denklem ii¢ boyutta
tamamen integre edilebilir sitemlere bir 6rnek teskil etmektedir.

Anahtar Sézciikler: Integre edilebilir sistemler, Hamiltonian integer edilebilir sistemler.

1. INTRODUCTION

Integrable Hamiltonian systems are studied for more than three decades and there are many
examples of 1+1-dimensional ones in literature. The well-known example in this field is
Korteweg- de Vries (KdV) equation. The first discovery, made by Gardner [1], was that the KdV
equation could be written as a completely integrable Hamiltonian system. This idea was further
developed by Zakharov and Fadeev [2]. The general concept of a Hamiltonian system of
evolution equations first appears in the works of Magri [3], Kupershmidt [4] and Manin [5].
Further developments, including the simplified techniques for verifying the Jacobi identity,
appear in Gelfand and Dorfman [6], Olver [7] and Kosmann —Schwarzbach [8]. The basic
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theorem on bi-Hamiltonian systems is due to Magri [3, 9], who was also the first one to publish
the second Hamiltonian structure for the KdV and the other equations.

For a long time there were only few examples of 2+1- and even no examples of 3+1-
dimensional integrable systems. Very recently Neyzi, Nutku and Sheftel [10] discovered that the
second heavenly equation of Plebanski, when being presented in a two component form, is a 3+1-
dimensional bi-Hamiltonian integrable system. Later, it was discovered that the complex Monge-
Ampere equation in (3+1) real dimensions is completely integrable in the sense of the Magri’s
theorem [11].

In [12] we studied symmetry reduction of second heavenly equation and we obtained a
2+1-dimensional bi-Hamiltonian system. In this paper I will present a new 2+1-dimensional bi-
Hamiltonian system. The Lagrangian of this system is,

2 2
L=uu, —u,—uu, — aut(ux —uy) (1

and Euler Lagrange equation gives the following non linear 2+1 dimensional partial differential
equation in one-component form.

2 —
Uy Uy — Uy — uxy o a(uxt o uyt)_ 0 @

where Ol is an arbitrary constant. This system is obtained by using a linear combination of
invariants given in [12].

In section 2, I will give Lagrangians and construct the first Hamiltonian structure using
Dirac’s theory [13] of constraints. In section 3 I derive a recursion operator for a new system. In
section 4 I obtain the second Hamiltonian structure and Hamiltonian function by applying the
recursion operator to the first Hamiltonian structure. Finally in section 5, the Jacobi identity for
the Hamiltonian structure will be checked in detail by using Olver’s method [14].

2. LAGRANGIAN AND FIRST HAMILTONIAN STRUCTURE

In this part I use the method of [10] for the calculation of the first Hamiltonian structure. The
Lagrangian density (1) for the equation in one-component form (2), but this must be converted to
a form suitable for applying Dirac’s theory of constraints. For this purpose, I introduce an
auxiliary variable q whereby system (2) assumes the form

u,=49q
3)

q, =ui[q§ +a(qx —qy)+un —uxy]EQ

XX

of a first-order two-component system. Here sub indexes X, ) and  stand for partial derivative of

0 0 0

—, — and — respectively and in all paper I will use the same notation. Lagrangian density
ox Oy
for system (3) is given by, should be degenerate, that is, linear in the time derivative of the

unknown ¥, and withno ¢, :

L= %(2qu,uxx _qzuxx _uf _uxuy _aut(ux —My )) @

This Lagrangian is degenerate [16], because its Hessian

119



A New 2+1-Dimensional Hamiltonian Integrable ... Sigma 27, 118-128, 2009

o’L
ou’
vanishes identically. Alternatively, the canonical momentum given by;

0
17 =£=qum —OK(Mx _uy)

t

0

can not be inverted the velocity U, and we have degenerate Lagrangian. After substituting
g = u, , coincides with our original Lagrangian (1) up to a total divergence. We can easily check

that Euler-Lagrange equations for (4) give the system (3). The variational derivative for k
defined as following.

5 _0 0 0 .38 o0
su out Tou  touy  ouy  Touy U oul,

Here k =1,2 with u' = g and u' = U , hence we get,

oL

5—q=uzum—qum =0=>u =4q

and

oL

a Z_Qtuxx +G’(QX _qy)+uxx +uxy +q§ = 0

q, =ui[q§ valg, —q,)+u, —u, |

XX

Since the Lagrangian density (4) is linear in #, and has no g, , the canonical momenta

oL

T =—:2 u._ —o\u. —u

u aut q XX (x y) (5)
oL

n =—=0

' g,

cannot be inverted for the velocities #, and ¢, and so the Lagrangian is degenerate. Therefore,

according to the Dirac’s theory [13], we impose (5) as constraints
¢, =m, —2qu _ + a(ux —uy)
d)q =7,

where the canonical momenta should satisfy canonical Possion brackets

(6)
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o) )= 80— 2oy ik =12
and calculate the Passion brackets of the constraints
K, =p,(x.y).0,( )] ™
If we organize them into a 2 X 2 matrix form, we find
Ky =[0,(x.5). 00", 5] = 2g(x)8 ... (x = (v = ')
+2q(x)5, (x' = x)3(y" = y)+ad . (x = x"W(y - ')
—od(x =2, (y =) + 08, (' = x(y' — y) - adx' = x)8, (v - )
(3)
K,=-K, = l(l)u (x’y)’q)q (x'a)")J: _2”)@5(35' - x)6(y' - J’)
K, = l(l)q (X,y),d)q(X’,y')J: 0,
where the subscripts run from 1 to 2 with 1 and 2 corresponding to % and ¢ , respectively. In all
the coefficients of K, if we kill factor (—2) this yields the symplectic operator K, that is an

inverse of the Hamiltonian operator J 0"

K, - [qu + quxu— alD,-D,) - gJ | o

XX
which is an explicitly skew-symmetric local matrix-differential operator. The first Hamiltonian

1
operator J. 0= (K l./.)7 is obtained by inverting K i in (9) as

1
0 R
Jy = V (10)
1 q q a a
- sp +p L% (p _p )%
uxx uix ) ' uix uxx ( ) y)uxx

which is explicitly skew-symmetric. Also it satisfies the Jacobi identity, as will be shown in
detail in section 5. The Hamiltonian density is

H =nu +n,q —L,
which results in
_ 1, 2
Hl—zq U, +u;, —uu,). (11)

The new system (3) can now be written in a Hamiltonian form with the Hamiltonian
density H | defined by (11)
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u, J o H, 1 9
= = 2 (12)
qt 0 5qu u_[QX +a(qx_qy)+u)ﬁx_uxy]
)
where O 4 = and 0 g = o are Euler-Lagrange operators [14], defined as
ou og
SH, &( dYoH
E(H)=—=)|—-—| — (13)
() ou jz_(;( dx} u,

u
with U ;= A and similarly for O qH 1 » Which correspond to the variational derivatives of the
X

Hamiltonian functional H1 = J. H ldxdy .

3. RECURSION OPERATOR

We start with the equation determining symmetries of the two-component system (3). We
introduce the two-component symmetry characteristic @ by

u, =cp(x,y,t,u,q,ux,uy,qx,qy) ((/)J
, D = . (14)
qr :\ll(xﬂyﬂt’uﬂq?u)c’uy’qx’qy) l//
From the Frechét derivative of the flow we find
D, -1
A= (15)
- 2
QD5+LDny Dt_&Dx_i(Dx_Dy)
uxx uxx uxx uxx

So that the equation determining symmetries of the new three-dimensional evolution
system is given by

Al@)=0. (16)
If we combine the first determining equation with the second equation in (16),

multiplied by the overall factor U __, we reproduce the determining equation for symmetries of

xx 2

original equation (1). The equation for symmetries (16) can be set in a 2-term divergence form
(.0, -alo, —0,)+uw) ~(1-q,)0, +q.w—0,) =0 a7

that implies the local existence of the potential variable (Z defined by
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~

?,=q,0,—alp, —o,)+u.w
g, =(-q)p, +q.v -0,

which also satisfies the same determining equation for the symmetries of (1) and therefore it is a
partner symmetry for (. In the two-component form, we define the second component of this

(18)

new symmetry, similar to the definition of ¥/, as 1/7 = (Zt . Then the two-component

~

»

~

W

vector satisfies the determining equation for symmetries in the form (16) and hence a symmetry
characteristic of the system (3), provided the vector (14) is also a symmetry characteristic.

@ =R(®) (19)

D =

with the recursion operator R given by

pl'lg.D, +a(D,-D,)] D'

X XX

R= , (20
(Q_l)Dx+Dy _qxx
where Dx_ ! is the inverse of Dx and defined as

X 00

D;1f=% fw—f f(g)ag. e

X

For the properties of this operator see [15].  Moreover, vanishing of the
commutator [R, A] , computed without using the equations (3), reproduce the new system (3) and

hence the operator R and A form a Lax pair for the 2-component system. The commutator
reads,

D(g,-0),. ~(q,-0), D;'(u, -q),
[R, 4]=

L {0-1u, -q). +(a(D, -D,)-2,Xg,-O)D,  (4,-0),

u

pey

It can be easily see that [R, A] =0 is equivalent to the system (3) and therefore R

and A form a Lax pair for 2-component system (3).
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4. SECOND HAMILTONIAN STRUCTURE AND HAMILTONIAN FUNCTION

The second Hamiltonian operator J | is obtained by applying the recursion operator (20) to the

first Hamiltonian operator J = RJ o With the result

D—l qx
X uxx
J, = , (22)
4 J?
uxx 1
where
1 1 1 1 1 1 2q q
J?=—(0-1)D,—+—D_(0-1) |+—=| D,—+—D, |-—*xD_Zx
1 2 (Q ) ' urx pes ' (Q ) 2 g uxx uxx g u)OC ' uxx
+ & i(D -D )L.}.L(D -D )&
2 uxx ’ ’ uxx uxx g ' uxx

Operator J | is obviously skew-symmetric and the Jacobi identity for this operator will

be checked in the next section in detail. The Hamiltonian function for J | Which generates the

system (3) is given by
Hy = (x+y)qu,. 23)
The Hamiltonian function H o satisfies the recursion relation of Magri,
u o H, oH,
=J,| 2 |=J ] (24)
q), bo) qu Io) qu

which shows that the new equation (1) in the 2-component form (3) is a bi-Hamiltonian system.
The second Hamiltonian operator is obtained by acting with the recursion operator R on the

Hamiltonian operator .J, o - In order to have the higher flows we generalize this relation as

J, =R"J, (25)
In the case of (22) we haven = 1. If we take, for example, 1 = 2 we can generate a

new Hamiltonian operator J ) = RZJ 0= RJ = J 1J 0_ 1J - Here we used the relation

R=J 1 J 0_ 1. By the repeated application of the recursion operator (20) to the Hamiltonian

operators J 0> J , and so on, we could obtain multi-Hamiltonian representation of our new

system.
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5. JACOBI IDENTITY

In this section, I will concentrate on checking of the Jacobi identity for the Hamiltonian operators
J o and J 1

Definition: A linear operator J : A? — A? is called Hamiltonian if its Possion bracket
{P, Q} = IdP - JOO dx satisfies skew-symmetry property

{p,ot=-{o, P}, 26)
and the Jacobi identity
{P.0). R} +{R. P} O+ {{0. R}, P} =0 @)

for all functionals P, Q and R

But using this definition directly, the verification of Jacobi identity (27), even for
simplest skew-adjoint operators, appears a hopelessly complicated computational task. For this
reason we will use the Olver’s method [14] by following the theorem below.

1
Theorem: Let J be a skew-adjoint X ¢ matrix differential operator and @ = 5 j (JH A H)dx
be the corresponding bi-vector. Then J is Hamiltonian if and only if
Prv,,(©)=0. (28)

We mentioned that if we can present the system (3) in the form (24), the system is

called bi-Hamiltonian system. We say that J 0> J , form a Hamiltonian pair if every linear
combination a.J, ot bJ | Where a and b are constants, should satisfy the Jacobi identity.
Therefore, if we directly compute the Jacobi identity for I~ = a.J, ot bJ, , then we guarantee
that J, o and J | satisfy the Jacobi identity. Because, if we choose @ =1,b=0 and
a =0, b =1 then we will end up with the Jacobi identity for J, o and J | respectively. In this
way, we will prove that, J, o and J | independently satisfy the Jacobi identity and also that any

linear combination a.J ot bJ | also satisfies Jacobi identity. Therefore we start with,

be—l _ qu —d
uxx
I'=aJ,+bJ, = (29)
b —
9% _4D,+BD, +C
u

where
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A= ! (bq —2aq, +abq, +bu —aa)

B= i_,_ (bq;_a)]
uxx u)oc
u U, q
C="24- 2B -b £

By using theorem (28), we define the two-form bi-vector

o=, I3l

a)i)A @’ dx dy

. 1 2 ..
Where the uni-vectors correspond to @ =7] and @~ = @ and 1, ] =

(31) becomes

o= ;I((Dxln)An+(i . }9/\77+(in -

xx xx xx

If we substitute & in (28) we obtain

Pr VI'a) (@) =

xx

—t(2(qu—a)PrV ( )+abPrVJw( y)-i—bPrVJw(u )

pe

Sigma 27, 118-128, 2009

(30)

(€2

1,2 . Hence

a]r]/\G—AHX nO+ B0, AH]dxdy

{20002, o

u, APrVJw[ ! D/\H N
uxx

(bPrVJw[ ! ]+baPrVJw( )+albg, - )PrVJw( ! D/\H Aﬁ}dxdy
u uxx

xx xx

and by using the following relation [14],

prv,, =S 0,31, )

a,p.J J

we can compute the terms given in (32) as given below

rer o)<, M

u

XX

P, (q,)=D, {(bq*—_“}; ~ 460, +BO, + ce]

u

J?]—A@x + B0, +COJ
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bg, - bg, -
rVJw(l __sz bn - .79\ 4 q9.—4a 0.
xx U, x U,
Prv, [12 ——Dx py—| 2= | g_[B4.ma )y
xx U x U
4. bq,
Prv,, (u,)=D,| by- 0 0,
U X U,

After we substitute these terms in (32) we get a very large equation which is not suitable
to write here. After that we do a very lengthy and cumbersome calculation and finally we get

zero. This means, by virtue of (28), that the Jacobi identity is satisfied both for J o and J , and

they form a Hamiltonian pair.
6. CONCLUSION

We discover new 2+1-dimensional nonlinear evolution equation and we write this equation in a
two-component form in order to obtain its Hamiltonian structure. We start with the first

Hamiltonian structure. We use Dirac’s theory of constraints to construct the matrix operator K
which is an inverse of the first Hamiltonian operator J, o - We obtain a recursion operator for
symmetries and we show that the recursion operator R and the linear operator A of the equation

determining symmetries commute and, moreover, they form a Lax pair for the new two-
component evolutionary system. We have found second Hamiltonian structure by acting with the

recursion operator KR on the first Hamiltonian operator ./ o - Finally, we prove that both

Hamiltonian operators J 0> J | and also their linear combination alJ Lt bJ , satisfy the Jacobi

identity. Therefore, this new system is bi-Hamiltonian and, by Magri’s theorem, the multi-
Hamiltonian structure makes the new system to be a completely integrable system in 2+1-
dimensions. In the future work we will present the Lie algebra of all point symmetries and
integrals of motion which generate all variational point symmetries of the new evolution system.
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