You are here

On the basisness in L2(0, 1) of the root functions in not strongly regular boundary value problems

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
In the present article we consider the non-self adjoint Sturm-Liouville operators with periodic and anti-periodic boundary conditions which are not strongly regular. We obtain the asymptotic formulas for eigenvalues and eigenfunctions of these boundary value problems, when the potential q(x) is a complexvalued function. Then using these asymptotic formulas, the Riesz basisness in L2(0, 1) of the root functions are proved.
51-60

REFERENCES

References: 

[1] M. A. Naimark, Linear Differential Operators, Part I, Frederick Ungar Pub. Co.,
New York, 1967.
[2] G. M. Kesel’man, On the unconditional convergence of expansions in the eigenfunctions
of some differential operators, Izv. Vyssh. Uchebn. Zaved. Mat. [Soviet Math.
(Iz. VUZ)], N.2: 82-93 (1964).
[3] V. P. Mikhailov, On the bases in L2(0, 1), Dokl. Akad. Nauk SSSR [Soviet Math.
Dokl.], 144, N.5: 981-984 (1962).
[4] N. Dunford, J. T. Schwartz, Linear Operators, Prt.3 Spectral Operators,Wiley, New
York, 1970.
[5] P. W. Walker, A nonspectral Birkhoff-regular differential operators, Proc. of American
Math. Soc. V. 66, N.1: 187-188 (1977).
[6] N.I. Ionkin, The solution of a boundary-value problem in heat conduction with a
nonclassical boundary condition, Differ. Equations, V.13, N. 2: 294-304 (1977).
[7] N. B. Kerimov, Kh. R. Mamedov, On the Riesz basis property of the root functions
in certain regular boundary value problems, Math. Notes, V. 64, N.4: 483-487(1998).
[8] N. K. Bari, Biorthogonal systems and bases in Hilbert spaces, Uchen. Zap. Moskov.
Gos. Univ. 148, 4:68-107 (1951) (Russian).
[9] I. C. Gohberg, M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint
Operators, American Math. Soc., Providence, Rhode Island, 1969.
[10] V. A Marchenko, Sturm-Liouville Operators and Applications, Birkhauser Verlag,
1986.

Thank you for copying data from http://www.arastirmax.com