You are here

Gelfand-Levitan-Marchenko Integral Equation for Singular Differential Operators

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the Gelfand-Levitan-Marchenko (GLM) type main integral equation which is important for solution of the inverse problem related to determining of a singular Sturm-Liouville differential operators is obtained. AMS subject classifications: Primary 34A55, Secondary 34B24, 34L05
40-51

REFERENCES

References: 

[1] Agranovich, Z.S. and Marchenko, V. A., The lnverse Problem Scaterring Theory (New York: Gordonand Breach) (1963).
[2] Alpay, D. and Gohberg,I., Inverse problems associated to a canonical differential system, Oper. Theory Adv. Appl. 127 (2001) 1-27.
[3] Ambarzumyan, V.A., Uber eine frage der eigenwerttheorie, Z. Phys. 53 (1929) 690 695.
[4] Amirov, R. Kh., On Sturm-Liouville Operators with Discotinuity conditions inside an
interval, J. Math. Anal. Appl. 317 (2006) 163-176. [5] Anderssen, R.S., The effect of discontinuities in density and shear velocity on the
asymptotic overtone structure of tortional eigenfrequencies of the earth, Geophys. J.
R. Astron. Soc. 50 (1997) 303-309.
[6] Borg, G., Eine umkehrung der Sturm Liouvillesehen eigenwertaufgabe, Acta Math. 78 (1946) 1-96.
[7] Bruckstein, A. M., Levy, B. C. and Kailath, T., Differential methods in inverse scat¬tering SIAM J. Appl. Math. 45 (1985) 312-35.
J
50
S
. GÜLYAZ AND S. KAPLAN
[8] Burridge, R., The Gel'fand-Levitan, the Marchenko, and the Copinath-Sondhi integral equations of inverse scattering theory regarded in the context of inverse impulse-response problems Wave Motion 2 (1980) 305-23
[9] Carlson, R., Inverse spectral theory for some singular Sturm Liouville problems, J. Differential Equations 106 (1) (1993) 121-140. [10] Chadan, K. and Sabatier, P. C., Inverse Problems in Quantum Scattering Theory
(Berlin: Springer) (1977).
[11] Coen, S., On the elastic profiles of a profiles of a layered medium from reflection data. Part I. Plane-wave sources J. Acoust. Soc. Am. 70 (1981) 172-5
[12] Coen, S., Inverse scattering of the permittivity and permeability protiles of a plane stratified medium J. Math. Phys. 22 (1981) 1127-9.
[13] Faddeyev, L. D. and Seckler, B. The inverse problem in the quantum theory of scat¬tering J. Marh. Phy. 4 (1963) 72-103
[14] Freiling, G., Yurko, V.A., Inverse spectral problems for singular non-selfadjoint differ¬ential operators with discontinuities in an interior point, Inverse Problems 18 (2002)
757-773.
[15] Gelfand I.M., B.M. Levitan, On the determination of a differential equation from its
spectral function, Izv. Akad. Nauk SSR. Ser. Mat. 15 (1951) 309-360 (in Russian), English transl. in Amer. Math. Soc.. Transl. Ser. 2 (1) (1955) 253-304.
[16] Gulyaz, S., On Singular Sturm Liouville Operators, (submitted).
[17] Hald, O.H., Discontinuous inverse eigenvalue problem, Commun. Pure Appl. Math.
37 (1984) 539-577.
[18] Hochstadt, H., Lieberman, B., An inverse Sturm Liouville problem with mixed given
data, SIAM J. Appl. Math. 34 (1978) 676-680.
[19] Horvath, M., Inverse spectral problems and closed exponential systems, Ann. of Math.
162 (2005) 885-918.
[20] Freiling, G., Yurko, V.A., Inverse Sturm Liouville Problems and Their Applications,
NOVA Science Publishers, New York, (2001).
[21] Kay, I. and Moses, H. E., 1nrer.w Scullerinn Popm~IYSS-1963 (Lie Groups: Hisrorj.
Fronlirri und Applicurionr Vol. 12) (Brookline, MA: Math. Sci. Press) (1982).
[22] Krueger, R. J., An inverse problem for an absorbing medium with multiple disconti¬nuities Q. Appl. Math. 34 (1976) 129-47 (1976).
[23] Krueger, R.J., Inverse problems for nonabsorbing media with discontinuous material
properties, J. Math. Phys. 23 (1982) 396-404.
[24] Levitan, B.M., On the determination of the Sturm Liouville operator from one and
two spectra, Math. USSR Izv. 12 (1978) 179-193.
[25] Levitan, B.M. (1984). Inverse Sturm-Liouville Problems, Moscow: Nauka, (Engl.
Transl.1987 (Utrecth: VNU Science Press))
[26] Levitan, B.M., Sargsjan, I.S., Sturm Liouville and Dirac Operators, Kluwer Academic Publishers, Dordrecht, Boston, London, (1991).
[27] Litvinenko, O.N. and Soshnikov, V.I., The theory of Heterogeneous Lines and Their Applications in Radio Engineering, Radio, Moscow, (1964) (in Russian).
[28] Marchenko, V.A.,Some Problems in the Theory of Second-Order Differential Opera¬tors, Dokl. Akad.,Nauk SSSR. 72 , (1950) 457-560.
[29] Marchenko, V.A., Sturm Liouville Operators and Their Applications, Naukova
Dumka, Kiev, 1977, English transl.: Birkhauser, (1986). [30] Meschanov, V.P. and Feldstein, A.L., Automatic Design of Directional Couplers,
Sviaz, Moscow, (1980).
[31] Newton, R. G., Inversion ofrcflection data for layered media: a review of exact methods
Geophys. J. R.Aslron. Soc. 65 (1981) 191-215.
GELFAND-LEVITAN-MARCHENKO INTEGRAL EQUATION
51
[32] Poschel, J., Trubowitz, E., Inverse Spectral Theory, Academic Press, Orlando, (1987). [33] Ramm, A.G., Property C for ODE and applications to inverse problems, in: Operator Theory and Applications, Winnipeg, MB, (1998), in: Fields Inst. Commun., vol. 25,
AMS, Providence, RI, (2000), pp. 15-75.
[34] Sabatier, P.C., Applied lnverse Problems (Berlin: Springer) (ed) (1978).
[35] Yurko, V.A. Inverse Spectral Problems for Differential Operators and their Applications, New York: Gordon & Breach (1999).
[36] Yurko, V.A., Integral transforms connected with discontinuous boundary value prob¬lems, Integral Transforms Spec. Funct. 10 (2) (2000) 141-164.
[37] Yurko, V.A., Method of Spectral Mappings in the Inverse Problem Theory, in: Inverse Ill-posed Probl. Ser., VSP, Utrecht, (2002).

Thank you for copying data from http://www.arastirmax.com