You are here

Bessel Potansiyelli Sturm-Liouville Diferensiyel Denklemlerin Çözümleri İçin integral Gösterilimleri

Integral Representations for Solutions of Sturm-Liouville Differential Equations With Bessel Potential

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study. representations with transformation operator have been obtained for Sturm-Liouville operators with bessel potential which have been written self-adjoint extensions and have been considered in [1].
Abstract (Original Language): 
Bu çalışmada. [1]'de incelenen ve self-adjoint genişlemeleri yazılan Bessel potansiyelli Sturm-Liouville operatörleri için çevirme operatörü tipinde gösterilimler elde edilmiştir.
39-61

REFERENCES

References: 

[I] R. KH. Amirov. I. Guseinov . Self adjoint extention one class Sturm-Liouville operators with nonintegrable potential. Dokl. Acad. Nauk. Azerb. Vol.58. no:5-6. (2002)..3-7.
[2]. R. Kh. Amirov and V. A. Yurko. On Differential Operators with Singularity and Discontinuity Conditions Inside the Interval. Ukr. Math. Jour.. v.53. No11. (2001). 1443-1458.
[3]. R. Kh Amirov. Direct and Inverse Problems for Differential Operators with Singularity and Discontinuity Conditions Inside the Interval Transactions of NAS Azerbaijan..Vol 22. No.1. (2002). 21-39
[4]. R. Kh Amirov. On Sturm-Liouville Operators with Discontinuity Conditions Inside an Interval J. Math. Anal. Appl. 317 (2006) 163-176.
[5]. R. Kh Amirov. On a System of Dirac Differential Equations with Discontinuity Conditions Inside an Interval. Ukrainian Mathematical Journal. Vol. 57. No.5. (2005). [6]. G. Borg. Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe. Acta Math.
78 (1946) 1-96
[7]. B. M. Levitan. I.S. Sargsyan. Introduction to Spectral Theory. Amer. Math Soc. Transl. Math. Monogr.. vol. 39. Amer. Math Soc.. Providence. RI. 1975 [8]. V. A. Marchenko. Sturm-Liouville Operators and Their Applications. Nauka Dumka. Kiev. !977. English Transl. Birkhâuser. Basel. 1986.
[9]. B. M. Levitan. Inverse Sturm- Liouville problems. Nauka Moscow. 1984. English
Transl. : VNU Sci Pres. Utrecht. 1987.
[10] J. R. Mclaughlin. Analytical methods for recovering coefficients in Differential equations from spectral data. SIAM rev. 28 (1986). 53-72.
[II] . D. G. Shepelsky. The inverse problem of reconstruction of the medium's conductivity in a class of discontinuous and increasing functions. Adv. Soviet Math. 19
(1994). 209-231
[12]. O. H. Hald. Discontinuous inverse eigenvalue problems. Comm. Pure. Appl. Math. 37 (1984). 539-577.

Thank you for copying data from http://www.arastirmax.com