Ackermann, E. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference.
Future of learning group publication, 5(3), 438.
Barak, M., & Zadok, Y. (2007). Robotics projects and learning concepts in science, technology and
problem solving. International Journal of Technology and Design Education, 19(3), 289–307.
Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an
informal learning environment. Journal of Research on Technology in Education, 39(3), 229.
Beer, R. D., Chiel, H. J., & Drushel, R. F. (1999). Using autonomous robotics to teach science and
engineering. Communications of the ACM, 42(6), 85–92.
Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic
review. Computers & Education, 58(3), 978–988.
Bjoerner, T. (2009, June). If I had a Robot it should do Everything for me: Children’s Attitudes to
Robots in Everyday Life. International Journal of Learning, 16(3), 243–254.
Burket, S., Small, C., Rossetti, C., Hill, B., & Gattis, C. (2008). A day camp for middle school girls
to create a STEM pipeline. Proceedings of the 2008 American Society for Engineering
Education Annual Conference & Exposition. Pittsburgh, PA.
Cannon, K., LaPoint, M. A., Bird, N., Panciera, K., Veeraraghavan, H., Papanikolopoulos, N., &
Gini, M. (2006). No fear: University of Minnesota Robotics Day Camp introduces local youth
to hands-on technologies. Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on (pp. 363–368).
Cannon, K. R., Panciera, K. A., & Papanikolopoulos, N. P. (2007). Second annual robotics summer
camp for underrepresented students. Proceedings of the 12th annual SIGCSE conference on
Innovation and technology in computer science education (pp. 14–18). New York, NY, USA:
ACM.
Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science.
ACM SIGCSE Bulletin (Vol. 35, pp. 307–311). ACM. doi:10.1145/792548.611994
Harel, I. (1991). Children designers. Ablex Pub. Corp. (pp. 24–27). New Jersey: Ablex Publishing.
History and Educational Potential of LEGO Mindstorms
i
Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO Training on Pupils ’ School
Performance in Mathematics , Problem Solving Ability and Attitude : Swedish Data.
Educational Technology & Society, 9(3), 182 – 194.
Iturrizaga, I. M. (n.d.). Study of educational impact of the LEGO Dacta materials-INFOESCUELAMED.
Final Report. 2000.
Jim, C. K. W. (2010). Teaching with LEGO mindstorms robots: Effects on learning environment and
attitudes toward science. ProQuest Dissertations and Theses. The University of Texas at
Dallas, United States -- Texas.
Johnson, J. (2003). Children, robotics, and education. Artificial Life and Robotics, 7(1), 16–21.
doi:10.1007/s10015-003-0265-5
Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and learning
in a digital world. New Jersey: Lawrence Erlbaum.
Keathly, D., & Akl, R. (2007). Attracting and Retaining Women in Computer Science and
Engineering: Evaluating the Results. 2007 ASEE Annual Conference.
Lego Mindstorms NXT Hardware Developer Kit. (n.d.). Retrieved August 18, 2011, from
http://mindstorms.lego.com/en-us/support/files/default.aspx
Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical
problems? Computers & Education, 49(4), 1097–1111.
Martin, F. (1988). Children, cybernetics, and programmable turtles. Unpublished Masters Thesis,
Massachusetts Institute of Technology Media Laboratory.
Martin, F., Mikhak, B., Resnick, M., Silverman, B., & Berg, R. (2000). To mindstorms and beyond:
Evolution of a construction kit for magical machines. Robots for kids: Exploring new
technologies for learning (pp. 9–33). San Francisco: Morgan Kaufmann.
Mataric, M. J., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and
STEM education. AAAI spring symposium on robots and robot venues: Resources for AI
education.
Mauch, E. (2001). Using Technological Innovation To Improve the Problem-Solving Skills of
Middle School Students: Educators’ Experiences with the LEGO Mindstorms Robotic
Invention System. Clearing House, 74(4), 211–214.
Maxwell, J. W. (2006). Re-situating Constructionism. The International Handbook of Virtual
Learning Environments, 279–298.
McNally, M., Goldweber, M., Fagin, B., & Klassner, F. (2006). Do lego mindstorms robots have a
future in CS education? Proceedings of the 37th SIGCSE technical symposium on Computer
science education - SIGCSE ’06, 61. doi:10.1145/1121341.1121362
McNerney, T. (2004). From turtles to Tangible Programming Bricks: explorations in physical
language design. Personal and Ubiquitous Computing, 8(5), 326–337. doi:10.1007/s00779-
004-0295-6
McWhorter, W. (2005). Turtles and beyond: A history of programmable robots. Unpublished
manuscript.
Mindell, D., Beland, C., Wesley, C., Clarke, D., Park, R., & Trupiano, M. (n.d.). LEGO mindstorms,
the structure of an engineering (r)evolution. Retrieved July 15, 2011, from
web.mit.edu/6.933/www/Fall2000/LegoMindstorms.pdf
Mosley, P., & Kline, R. (2006). Engaging Students: A Framework Using LEGO® Robotics to Teach
Problem Solving. Information Technology, Learning, and Performance Journal, 24(1).
Nordstrom, G., Reasonover, G., & Hutchinson, B. (2009). Attracting Students to Engineering
Through Robotics Camp. ASEE Southeast Section Conference.
Nourbakhsh, I. R., Hamner, E., Crowley, K., & Wilkinson, K. (2004). Formal measures of learning
in a secondary school mobile robotics course. Robotics and Automation, 2004. Proceedings.
ICRA ’04. 2004 IEEE International Conference on (Vol. 2, pp. 1831–1836 Vol.2).
Nugent, G., Barker, B., & Grandgenett, N. (2010). Impact of Robotics and Geospatial Technology
Interventions on Youth STEM Learning and Attitudes. Journal of Research on Technology in
Education, 42(4), 391–408.
Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas. New York. New York:
Basic Books.
Papert, S. (1999). What is Logo? Who needs it. Logo Philosophy and Implementation (pp. iv–xvi).
Logo Computer Systems Inc.
Papert, S., & Harel, I. (n.d.). Situating constructionism. Retrieved July 15, 2011, from
http://www.papert.org/articles/SituatingConstructionism.html
Papert, S., & Solomon, C. (1971). Twenty things to do with a computer. Retrieved July 15, 2011,
from http://dspace.mit.edu/handle/1721.1/5836
Petre, M., & Price, B. (2004). Using Robotics to Motivate “Back Door” Learning. Education and
Information Technologies, 9(2), 147–158. doi:10.1023/B:EAIT.0000027927.78380.60
Robinson, M. (2005). Robotics-Driven Activities: Can They Improve Middle School Science
Learning? Bulletin of Science, Technology & Society, 25(1), 73–84.
doi:10.1177/0270467604271244
Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM
Education, 5(3-4), 17–28.
Ruiz-del-Solar, J., & Aviles, R. (2004). Robotics Courses for Children as a Motivation Tool: The
Chilean Experience. IEEE Transactions on Education, 47(4), 474–480.
doi:10.1109/TE.2004.825063
Sargent, R., Resnick, M., Martin, F., & Silverman, B. (1996). Building and learning with
programmable bricks. Constructionism in practice: Designing, thinking and learning in a
digital world, 161–174.
Sullivan, F. R. (2008). Robotics and science literacy: Thinking skills, science process skills and
systems understanding. Journal of Research in Science Teaching, 45(3), 373–394.
doi:10.1002/tea
Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2006a). İlköğretim Fen ve Teknoloji Dersi (6,7 ve 8.
Sınıflar) Öğretim Programı.
Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2006b). İlköğretim Teknoloji ve Tasarım Dersi
Öğretim Programı ve Klavuzu (6, 7 ve 8. Sınıflar ).
Talim ve Terbiye Kurulu Başkanlığı (TTKB). (2009). İlköğretim Matematik Dersi 1-5. Sınıflar
Öğretim Programı.
Watt, M. (1982). What is Logo? Creative Computing, 8(10), 112–29.
Williams, D., Ma, Y., Prejean, L., & Ford, M. (2008). Acquisition of Physics Content Knowledge
and Scientific Inquiry Skills in a Robotics Summer Camp. Journal of Research on Technology
in Education, 40(2), 201–216.
Wyeth, P., Venz, M., & Wyeth, G. (2004). Scaffolding children’s robot building and programming
activities. RoboCup 2003: Robot Soccer World Cup VII, 308–319.
Thank you for copying data from http://www.arastirmax.com