Buradasınız

DOĞRUSAL OLMAYAN OPTİMİZASYON PROBLEMLERİ İÇİN TAŞINIR ALGORİTMİK FONKSİYONLAR YÖNTEMİ

TRANSITIVE ALGORITHMIC FUNCTIONS METHOD FOR NONLINEAR OPTIMIZATION PROBLEMS

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
In this work, an equation is proposed to solve the general nonlinear continuous optimization problems. This equation can be used directly for obtaining analytical and numerical solutions. Since it can be transformed to some algorithmic functions through both analytically and numerically, this equation is named as the Transitive Algorithmic Functions (TAF) equation. The TAF equation can be applied to the optimization of general nonlinear continuous engineering problems. This equation presents alternative deterministic techniques and can define simple TAF algorithms which do not require derivative information as stochastic methods. Effectiveness of the equation and the proposed algorithms are demonstrated by their implementations.
Abstract (Original Language): 
Bu çalışmada, sürekli gerçek sayılı fonksiyonların optimizasyon problemlerinin çözümüne yönelik olarak bir denklem önerilmiştir. Doğrudan analitik ya da sayısal çözümlere dönüşebildiği gibi, analitik veya sayısal yaklaşımla üretilebilecek yeni algoritma fonksiyonlarına da taşınabilen diferansiyel formdaki bu denklem, Taşınır Algoritmik Fonksiyonlar (TAF) Denklemi olarak isimlendirilmiştir. TAF denkleminin doğrusal olmayan sürekli fonksiyonlarla ifade edilen mühendislik problemlerine uygulanabilmesi mümkündür. Belirleyici (deterministik) olarak nitelendirilebilecek teknikler veren bu denklemle, olasılıksal (stochastic) yöntemlerde olduğu gibi istenirse türev bilgisi kullanmayan basit TAF yöntemleri tanımlanabilmektedir. Denklemin ve önerilen tekniklerin etkinliği uygulamalarla gösterilmiştir.
1
9

REFERENCES

References: 

[1] Nocedal, J. ve Wright, S. J., “Numerical
Optimization”, Springer, 2006.
[2] Dutta, J., “Optimization Theory - A Modern
face of Applied Mathematics”, Directions, Indian
Institute of Technology Kanpur, no. 3, vol. 6, 2004.
[3] Rao, S.S., “Engineering Optimization: Theory
and Practice, Fourth Edition”, John Wiley and Sons,
Inc., 2009.
[4] Yamashita, H., A Differential Equation
Approach to Nonlinear Programming, Mathematical
Programming, cilt 18, s.155-168, 1980.
[5] Absil, P.-A. ve Kurdyka, K., “On the stable
equilibrium points of gradient systems”, Systems &
Control Letters, cilt 55, 2006.
[6] Wang, S., Yang, X.Q. ve Teo, K. L., “A
Unified Gradient Flow Approach to Constrained
Nonlinear Optimization Problems”, Computational
Optimization and Applications, cilt l. 25, no. 1-3,
s.251-268, 2003.
[7] Masuda, K. ve Kurihara, K., “Global
Optimization by Equilibrium-Point Search of
Gradient-Based Dynamical System”, Electronics and
Communications in Japan, cilt 91, no. 1, s.19–31,
2008.
[8] Bolte, J., “Continuous Gradient Projection
Method in Hilbert Spaces”, Journal of Optimization
Theory and Applications, cilt 119, no.2, s.235-259,
2003.
[9] Bian, W. ve Xue, X., “A Dynamical Approach
to Constrained Nonsmooth Convex Minimization
Problem Coupling with Penalty Function Method in
Hilbert Space”, Numerical Functional Analysis and
Optimization, cilt 31, no. 11, s. 1221-1253, 2010.
[10] Ozdemir, N. ve Evirgen F., “A Dynamic System
Approach to Quadratic Programming Problems with
Penalty Method”, Bulletin of the Malaysian
Mathematical Sciences Society, cilt 33, no. 1, s.79-91,
2010.
[11] Xie, X., “L-BFGS and Delayed Dynamical
Systems Approach for Unconstrained Optimization”,
Postgraduate Research Symposium, Department of
Computer Science, Hong Kong Baptist University,
2010.
[12] Alvarez, F, “On the Minimizing Property of a
Second Order Dissipative System in Hilbert Spaces”,
SIAM Journal on Control and Optimization, cilt 38,
no.4; s.1102-1119, 2000.
[13] Alvarez, F., Attouch, H., Bolte, J. Ve Redont,
P., “A Second-Order Gradient-Like Dissipative
Dynamical System with Hessian-Driven Damping.:
Application to Optimization and Mechanics”, Journal
des Mathématiques Pures et Appliqués, cilt 81, no.8,
s.747-779, 2002.
[14] Goudou, X. ve Munier, J., “The Gradient and
Heavy Ball with Friction Dynamical Systems: the
Quasiconvex Case”, Mathematical Programming, cilt
116, no.1-2, s.173-191, 2009.
[15] Jordan, D.W., and Smith, P., “Nonlinear
Ordinary Differential Equations”, Oxford University
Press, 2007.
[16] Hacıoğlu, A., ve Özkol, İ., “Vibrational
Genetic Algorithm As a New Concept in Airfoil
Çizelge 4. Tersten kanat profili tasarımı için 1500
fonksiyon hesabı ile elde edilen en iyi fonksiyon
değerleri (x10−6 ).
GA TGA TAF1-
2m TAF1-2m0 TAF2-
2m
TAF1-1m
TAF2-1m
9.52 10.2 5.58 32.2 4.01 5.65
13.6 7.77 2.54 14.6 2.0 3.85
15.3 3.5 6.53 19.9 2.06 3.03
4.52 2.56 9.28 13.4 2.47 4.79
5.7 1.58 7.91 25.9 6.66 8.74
Doğrusal Olmayan Optimizasyon Problemleri İçin Taşınır Algoritmik Fonksiyonlar Yöntemi
HACIOĞLU
9
Design”, Aircraft Engineering and Aerospace
Technology, cilt 3, no.3, s.228-236, 2002.
[17] Hacıoğlu, A., “Aerodinamik Dizayn ve
Optimizasyonda Genetik Algoritma Kullanımı,” Uçak
Mühendisliği Programı Doktora Tezi, İ.T.Ü. Fen
Bilimleri Enstitüsü, İstanbul, 2003.

Thank you for copying data from http://www.arastirmax.com