You are here

On Degree Sum Energy of a Graph

Journal Name:

Publication Year:

AMS Codes:

Abstract (2. Language): 
The degree sum energy of a graph G is defined as the sum of the absolute values of the eigenvalues of the degree sum matrix of G. In this paper, we obtain some lower bounds for the degree sum energy of a graph G.
340
345

REFERENCES

References: 

[1] C. Adiga and M. Smitha. On maximum degree energy of a graph. International Journal of
Contemporary Mathematical Sciences, 4(8). 385–396. 2009.
[2] M. Biernacki, H. Pidek, and C. Ryll-Nardzewsk. Sur une iné galité entre des intégrales
définies. Maria Curie SkÅ´Codowska University, A4, 1-4. 1950.
[3] V. Consonni and R. Todeschini. New spectral index for molecule description. MATCH Communications
in Mathematical and in Computer Chemistry, 60, 3-14. 2008.
[4] J. B. Diaz and F. T. Metcalf. Stronger forms of a class of inequalities of G. Pólya-G.Szeg˝o
and L. V. Kantorovich. Bulletin of the AMS - American Mathematical Society, 69, 415-418.
1963.
[5] F. Harary. Graph Theory, Addison-Wesley, Reading, 1969.
[6] I. Gutman. The energy of a graph. Berlin Mathmatics-Statistics Forschungszentrum, 103,
1-22. 1978.
[7] I. Gutman and O. E. Polansky. Mathematical Concepts in Organic Chemistry, Springer-
Verlag, Berlin, 1986.
[8] G. Hossein, F. Tabar, and A. R. Ashrafi. Some remarks on Laplacian eigenvalues and Laplacian
energy of graphs. Mathematical Communications, 15(2), 443-451. 2010.
[9] I. Ž. Milovanov´c, E. I. Milovanov´c, and A. Zaki´c. A short note on graph energy. MATCH
Communications in Mathematical and in Computer Chemistry, 72, 179-182. 2014.
[10] N. Ozeki. On the estimation of inequalities by maximum and minimum values. Journal of
College Arts and Science, Chiba University, 5, 199-203. 1968. (in Japanese)
[11] G. Pólya and G. Szeg˝o. Problems and Theorems in analysis. Series, Integral Calculus, Theory
of Functions, Springer, Berlin, 1972.
[12] H. S. Ramane, D. S. Revankar, and J. B. Patil. Bounds for the degree sum eigenvalues and
degree sum energy of a graph. International Journal of Pure and Applied Mathematical
Sciences, 6(2), 161-167. 2013.
[13] I. Shparlinski. On the energy of some circulant graphs. Linear Algebra and its Applications,
414, 378-382. 2006.
[14] N. Trinajsti´c. Chemical graph theory. N. Trinajstic, Chemical Graph Theory, Vol. 2, CRC
Press, Boca Raton, Florida, 1983.
REFERENCES 345
[15] B. Zhou. Energy of a graph. MATCH Communications in Mathematical and in Computer
Chemistry, 51, 111-118. 2004.

Thank you for copying data from http://www.arastirmax.com