You are here

Hiperyüzeylerde Optimizasyon Üzerine

Optimization on the Hypersurface

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In tin: work, we first define the Hessian foran of a hyper surface, dıen we relate rt to the Second Fimdamental form of the bjper surface. In the remaining part of this work, we uüe ıhese formulas, to show, how to evaluate the local and re:3İcted extreme value: of the h\pers.urface according to a given hyperplane.
Abstract (Original Language): 
Bu çalışımda. 5nce bir lupeıyize^in Hessian formu :anur.]andı. Hessian fsrnıla. hiperyilzeyin ikinci Temel form'j aras^dajd 3a|mtL venldi. Daha sonra, bu formlarla: bir Mperyüzeyu".. verilen bir hip er düzleme göre lokal ek s hem ur.] arının ve kıs ita bağlı ek s hem ur.] arının nasd he üaplanacag] açıklandı.
86
102

REFERENCES

References: 

[1] Jonh A. Thorpe. Elementary Topics in Differential Geometry. Springer-Verlag, New York. 1979. pp. 95-100
[2] Stephen Nash, Ariela Sofer, Linear and Nonlinear Programming. The McGraw-Hill Companies Inc., New York, 1996. pp: 338-650
[3] Mokhtrar S. Bazaran, C.M. Shetty. Nonlinear Programming Theory and Algorithms. John Wiley & Sons, New York, 1979. pp:252
[4] Jafolich C. Arya, Robin W. Lardner. Mathematical Analysis, Prentice
Hall, Inc. New York 1993 pp :768
[5] Boothby M. William. An Introduction to Diferentiable Manifolds and Riemannian Geometry Academic Press. New York, 1995. pp:363-369
[6] Kobayashi S. , Nomizu K. Foundations of Differential Geometry. vol:2. Interscience Publishers, New York, 1967. pp:40-46
[7] A. A. Groenwold. Positive definite separable quadratic programs for non-convex problems, Structural Multidisciplinary Optimization, (2012) 46:795-802, DOI 10.1007/s00158-012-0810-8
[8] Zh. B. Zhu, J. B. Jian. An Improved Feasible QP-free Algorithm for Inequality Constrained Optimization, Acta Mathematica Sinica, English
Series, Dec., 2012, Vol. 28, No. 12, pp. 2475-2488, DOI: 10.1007/s10114-012-0561-x
[9] M. Petrache, Meaning of the Hessian of a function in a critical point, February 1, 2012, http://www.math.ethz.ch/~petrache/hessian.pdf

Thank you for copying data from http://www.arastirmax.com