You are here

Pirazabol Merkezli İki Kollu Poli(metil metakrilat)’ın Termal Bozunma Kinetiğinin Araştırılması

Investigation of Thermal Degradation Kinetics of Pyrazabole Centered Two-Armed Poly(methyl methacrylate)

Journal Name:

Publication Year:

Abstract (2. Language): 
A series of two armed polymers of methyl methacrylate (PMMA) was synthesized by atom transfer radical polymerization (ATRP) method using 2,6-dibromopyrazabole as initiator and CuBr/2,2’-bipyridine as catalyst system at 100 °C ended different times. Average number molecular weights and molecular weight distributions of polymer series were recorded with GPC technique and thus, polymerization kinetic was determined. Thermal behavior of two-armed PMMA polymerized at 240 minutes was investigated detailed by TGA method at the heating rates of 5, 10, 15, 20 and 25 oC/min. From TGA results, a linear correlation was determined between the heating rate and the thermal stability of the polymer. Decomposition activation energies of polymer were found to be 120,98 kJ/mol and 112,53 kJ/mol by the Flynn-Wall-Ozawa and Kissinger methods, respectively. Some kinetic methods such as Coats-Redfern, Tang and Madhusudanan were used to investigate the thermal degradation mechanisms of polymer. In the light of obtained kinetic data, it was observed that the thermal decomposition mechanism of the pyrazabole centered two-armed PMMA was followed by D2 type deceleration mechanism at 5 °C/min optimum heating rate.
Abstract (Original Language): 
Atom transfer radikal polimerizasyon (ATRP) metoduyla 2,6-dibromo pirazabol başlatıcısı varlığında CuBr/2,2’-bipiridin katalizör sistemi ile katalizlenen metil metakrilatın 100 oC’de farklı sürelerde sonlandırılan bir seri iki kollu polimeri (PMMA) sentezlendi. Polimerlerin ortalama molekül ağırlıkları ve molekül ağırlık dağılımları GPC tekniği ile belirlenerek polimerizasyon kinetiği araştırıldı. 240 dakikalık sürede polimerleştirilen iki kollu PMMA’ın termal davranışı detaylıca test edildi. TGA metodu kullanılarak 5, 10, 15, 20 ve 25 oC/dak ısıtma hızlarında termal bozunma kinetiği araştırıldı. TGA sonuçlarından, ısıtma hızı ile polimerin termal kararlılığı arasında doğrusal bir ilişki tespit edildi. Polimerin termal bozunma aktivasyon enerjisi Flynn-Wall-Ozawa ve Kissinger metotlarından sırasıyla 120,98 kJ/mol ve 112,53 kJ/mol olarak hesaplandı. Polimerin termal bozunma mekanizmasını belirlemek amacıyla Coats-Redfern, Tang ve Madhusudanan gibi kinetik metotlar kullanıldı. Elde edilen kinetik veriler ışığında pirazabol merkezli iki kollu PMMA’ın termal bozunma mekanizmasının D2 tipi yavaşlama mekanizması üzerinden 5 °C/dak optimum ısıtma hızında ilerlediği gözlemlendi.
233
251

REFERENCES

References: 

[1] Trofimenko, S., Boron-pyrazzole Chemistry. I. Prrazaboles, Journal of the American Chemical Society, 89, 3165-3170, 1967.
[2] Matsumoto, F., Nagata, Y., Chujo, Y., Synthesis of Novel Poly(Pyrazabole)s with Electron-Withdrawing Structure in Their Main Chain, Polymer Bulletin, 53, 155-160, 2005.
[3] Liu, X. T., Zou, L. Y., Ren, A. M., Guo, J. F., Sun, Y., Huang, S., Feng, J. K., Theoretical Investigation of One- and Two-Photon Spectra of Pyrazabole Chromophores, Theor. Chem. Acc., 130, 37-50, 2011.
[4] Hayek, A., Nicoud J. F., Bolze, F., Bourgogne, C., Baldeck, P. L., Boron-Containing Two-Photon-Absorbing Chromophores: Electronic Interaction through the Cyclodiborazane Core, Angew. Chem. Int. Ed., 45, 6466-6469, 2006.
[5] Hayek, A., Bolze, F., Bourgogne, C., Baldeck, P. L., Didier, P., Arntz, Y., Me´ly, Y., Nicoud, J. F., Boron Containing Two-Photon Absorbing Chromophores. 2. Fine Tuning of the One- and Two-Photon Photophysical Properties of Pyrazabole Based Fluorescent Bioprobes, Inorg.Chem., 48, 9112-9119, 2009.
[6] Chow, Y. L., Johansson, C. I., Zhang, Y. H., Gautron, R., Yang, L., Rassat, A., Yang, S. Z., Spectroscopic and Electrochemical Properties of 1,3-Diketonatoboron Derivatives, J. Phys. Org. Chem., 9, 7-16, 1996.
[7] Matsumoto, F., Chujo, Y., Synthesis of New Fluorescent Organoboron Polymers Based on Pyrazaboles, Macromolecules, 36, 5516-5519, 2003.
249
[8] Barberá, J., Giménez, R., Serrano, J. L. Pyrazaboles: New Room-Temperature Columnar Liquid Crystals, Adv. Mat., 6, 470-472, 1994.
[9] Jäkle, F., Priermeier, T., Wagner, M., Synthesis, Structure, and Dynamic Behavior of ansa-Ferrocenes with Pyrazabole Bridges, Organometallics, 15, 2033-2040, 1996.
[10] Matsumi, N., Chujo, Y., π-Conjugated Organoboron Polymers via the Vacant p-Orbital of the Boron Atom, Polym. J., 40, 77-89, 2008.
[11] Wang, J. S., Matyjaszewski, K., Controlled Living Radical Polymerization - Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes, J. Am. Chem. Soc., 117, 5614-5615, 1995.
[12] Wang, J. S., Matyjaszewski, K., Controlled Living Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu (I)/Cu (II) Redox Process, Macromolecules, 28, 7901-7910, 1995.
[13] Davis, K., O’Malley, J., Palk, H. J., Matyjaszewski, K., Effect of The Counteranion in Atom Transfer Radical Polymerization using Alkyl (Pseudo)Halide Initiators, Polym. Prepr. Am.Chem. Soc. Div. Polym. Chem., 38(1), 687-688, 1997.
[14] Coessens, V., Pintauer, T., Matyjaszewski, K., Functional Polymers by Atom Transfer Radical Polymerization, Progress in Polymer Science, 26(3), 337-377, 2001.
[15] Singha, N. K., Klumperman, B., Atom Transfer Radical Polymerization Of Methyl Methacrylate (MMA) using CuSCN as Catalyst, Macromol. Rapid Commun., 21, 1116-1120, 2000.
[16] Kurt, A., Thermal Decomposition Kinetics of Poly(nButMA-b-St) Diblock Copolymer Snthesized by ATRP, Journal of Applied Polymer Science, 114(1), 624-629, 2009.
[17] Matyjaszewski, K., Xia, J., Atom Transfer Radical Polymerization, Chem. Rev., 101(9), 2921–2990, 2001.
250
[18] Kato, M., Kamigaito, M., Sawamoto, M., Higashimura, T., “Living” Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuVbpyLCl, Macromolecules, 28, 1721-1723, 1995.
[19] Matyjaszewski, K., Wang, J. L., Grimaud, T., Shipp, D. A., Controlled/‘Living’ Atom Transfer Radical Polymerization of Methyl Methacrylate using Various Initiation Systems, Macromolecules, 31, 1527-1534, 1998.
[20] Kurt, A., Kaya, E., Synthesis, Characterization, and Thermal Degradation Kinetics of the Copolymer Poly(4-Methoxybenzyl Methacrylate-co-Isobornyl Methacrylate), J. Appl. Polym. Sci., 115, 2359-2367, 2010.
[21] Meng, X. L., Huang, Y. D., Yu, H., Lv, Z. S., Thermal Degradation Kinetics of Polyimide Containing 2, 6-Benzobisoxazole Units, Polym. Degrad. Stabil., 92, 962-967, 2007.
[22] Li, L., Guan, C., Zhang, A., Chen, D., Qing, Z., Thermal Stabilities And The Thermal Degradation Kinetics of Polyimides, Polym. Degrad. Stabil., 84, 369-373, 2004.
[23] Flynn, J. H., Wall, L. A., A Quick, Direct Method for The Determination of Activation Energy from Thermogravimetric Data, Journal of Polymer Science Part B: Polymer Letters, 4, 323-328, 1966.
[24] Ozawa, T., Applicability of Friedman Plot, J. Thermal Anal., 31, 547-551, 1986.
[25] Kissinger, H. E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 29, 1702-1706, 1957.
[26] Nunez, L., Fraga F., Nunez M. R., Villanueva, M., Thermogravimetric Study of The Decomposition Process of The System BADGE (n=0)/1,2 DCH, Polymer, 41, 4635-4641, 2000.
[27] Marimuthu, A., Madras, G., Effect of Alkyl-Group Substituents on the Degradation of Poly(alkyl methacrylates) in Supercritical Fluids, Ind. Eng. Chem. Res., 46, 15-21, 2007.
251
[28] Coats, A. W., Redfern, J. P., Kinetic Parameters from Thermogravimetric Data, Nature, 201, 68-69, 1964.
[29] Tang, W., Liu, Y., Zhang, H., Wang, C., New Approximate Formula for Arrhenius Temperature Integral, Thermochim. Acta, 408, 39-43, 2003.
[30] Madhusudanan, P. M., Krishnan, K., Ninan, K. N., New Equations for Kinetic-Analysis of Nonisothermal Reactions, Thermochim. Acta, 221, 13-21, 1993.

Thank you for copying data from http://www.arastirmax.com