You are here

BALİSTİK PANEL VE KORUYUCU ZIRH ÜRETİMİNDE KULLANILAN LİF VE KOMPOZİT MALZEMELER

COMPOSITE MATERIALS AND FIBERS USED IN BALLISTIC PANEL AND PROTECTIVE ARMOR PRODUCTION

Journal Name:

Publication Year:

DOI: 
1024011/barofd.267304

Keywords (Original Language):

Abstract (2. Language): 
All living things need to protect themselves against attacks from outside world instinctively. And likewise, throughout history human beings not only have taken precautions against environmental factors but also against attacks from enemies. These precautions include precautions against leather, metal and metal derivatives, ditches, city walls and castles. And today, the combination of light fabrics having high resistance and elasticity with polymers forms the basis for ballistic panel and armour production. Investments in the area of ballistics, particularly military investments, as well as academic and military studies, indicate the significance of the issue. This study examines the characteristics of the composites used in ballistic panel and personal protective armour production; the combinations of the protectors made of composite materials and the ballistic tests applied to these protectors. This study which is a collection of the existing studies by examining them will provide literature support for studies on ballistic.
Abstract (Original Language): 
Her canlı varlık, dışarıdan gelebilecek saldırılara karşı içgüdüsel olarak korunma ihtiyacı hissetmektedir. Insanoğlu da tarih boyunca çevresel faktörlere karşı önlem aldığı gibi, düşmanlardan gelebilecek saldırılara da önlemler almıştır. Bu önlemler metal ve metal türevlerinden başlayarak, hendekler, surlar ve kaleler olarak devam etmiştir. Günümüzde ise, teknolijinin gelişmesiyle ortaya çıkan yüksek direnç ve elastikiyet özelliklerine sahip hafif kumaşların polimerlerle kombinasyonları, balistik panel ve zırh üretiminin temelini oluşturmaktadır. Askeri alanlar başta olmak üzere balistik alanında yapılan yatırım , akademik ve askeri çalışmalar, bu konunun önemini ortaya koymaktadır. Bu çalışmada, balistik panel ve kişisel koruyucu zırh üretiminde kullanılan kompozit malzemelerin özellikleri, kompozit malzemeler ile elde edilen koruyucuların kombinasyonları ve bu koruyuculara uygulanan balistik testler incelenmiştir. Yapılan çalışmaların irdelenerek derlenmesiyle oluşan bu çalışma, balistik alanında yapılacak çalışmalara literatür desteği sağlayacaktır.

REFERENCES

References: 

o Afshari, M., Kotek, R.
and C hen, P. 2011. High Performance Fibers. High Performance Polymers and
Engineering Plastics, 269-340. o Afshari, M., Sikkema, D. J., Lee, K. and Bogle, M. 2008. High Performance Fibers Based On Rigid and
Flexible Polymers. Polymer Reviews, 48(2), 230-274. o Behera, B. K. and Dash, B. P. 2013. An Experimental Investigation into Structure and Properties of 3D-
Woven Aramid and PBO Fabrics. The Journal of The Textile Institute, 104(12), 1337-1344. o Bunsell , A. R. 1988. Fibre Reinforcements for Composite Materials, Elsevier Science Publishers. o Candan, C. 2005. Zırh Teknolojilerindeki Gelişmeler. Zırh Teknolojileri Semineri, Ankara, Milli
Savunma Bakanlığı Arge ve Teknoloji Daire Başkanlığı. o Cavallaro, P.V.
2011. Soft Body Armor: An Overview of Materials, Manufacturing, Testing, and
Ballistic Impact Dynamics, Naval Undersea Warfare Center Division Newport. o Csukat, G.F. 2006. A Study on The Ballistic Performance of Composites, Macromol Symposia, 239: p.
217-226.
o
Deka, B. K. and Maji, T. K. 2011. Effect of TiO2 and nanoclay on the properties of wood polymer nanocomposite. Composites Part A: Applied Science and Manufacturing. 42(12), 2117-2125.
202
Journal of Bartın
Facult
y of Forestry, 2016, 18 (2): 194-204
o Duan,
Y., Keefe, M., Bogetti, T. A. and Cheeseman, B. A. 2005. Modeling The Role of Friction During Ballistic Impact of a High-Strength Plain-Weave Fabric. Composite Structures, 68, 331-337.
o
Ha-Minh, C., Boussu, F., Kanit, T., Crepin, D. and Imad, A. 2012. Effect of Frictions on The Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis. Applied Composite Materials, 19(3-4), 333-347.
o
Iannucci, L. and Pope, D. 2011. High Velocity Impact and Armour Design, Express Polymer Letters, 5, 262-272.
o
Jacobs, M. J. N. and Van Dingenen, J. L. J. 2001. Ballistic Protection Mechanisms in Personal Armour.
Journal of Materials Science, 36(13), 3137-3142. o Jordan, J. B. and Naito, C. J. 2014. An Experimental Investigation of The Effect of Nose Shape on
Fragments Penetrating GFRP. International Journal Of Impact Engineering, 63, 63-71. o Jovicic, J. M. 2003. Numerical Modeling and Analysis of Static and Ballistic Behavior of Multi-Layered/Multiphase Composite Materials Using Detailed Microstructural Discretization (Doctoral
Dissertation, Drexel University).
o
Karahan, G. 2008.
Balisti
k Yapılarda Balistik Performansı Etkileyen Parametrelerin İncelenmesi,
Tekstil Teknolojileri Dergisi,
3
, 51-58. o Kılıç, N. 2014. Development of Multi-Layer Ballistic Armor Panel with Simulation and Ballistic Tests.
Marmara University, Department of Mechanical Engineering. Ph. D. Thesis. o Kitagawa, T., Murase, H. and Yabuki, K. 1998. Morphological Study on Poly- p-
phenylenebenzobisoxazole (PBO) Fiber. Journal of Polymer Science Part B: Polymer Physics, 36(1),
39-48.
o
Ko, F. and Geshury, A. 2002. Textile Preforms for Composite Materials Processing, Advanced
Materials and Processes Information Analysis Center, AMPT-19. o Lane, R. A. 2005. High Performance Fibers for Personnel And Vehicle Armor Systems, Amptiac
Quarterly, 5, 1-10.
o
Lim, C. T., Tan, V. B. C. and Cheong, C. H. 2002. Perforation of High-Strength Double-Ply Fabric
System by Varying Shaped Projectiles. International Journal of Impact Engineering, 27(6), 577-591. o Lin, L. and Bhatnagar, A. 1992. Ballistic Energy Absorpstion of Composite-III, 24th International
SAMPE Technical Conference. p. 291-306. o Liu, S., Wang, J., Wang, Y. and Wang, Y. 2010. Improving The Ballistic Performance of Ultra High
Molecular Weight Polyethylene Fiber Reinforced Composites Using Conch Particles. Materials &
Design, 31(4), 1711-1715. o Mathur, A. and Netravali, A. N. 1996. Modification of Mechanical Properties of Kevlar Fibre by
Polymer Infiltration. Journal of Materials Science, 31(5), 1265-1274. o Naik, N. K. and Doshi, A. V. 2008. Ballistic Impact Behaviour of Thick Composites: Parametric
Studies. Composite Structures, 82(3), 447-464. o Nilakantan, G. 2013. Filament-Level Modeling of Kevlar KM2 Yarns for Ballistic Impact Studies.
Composite Structures, 104, 1-13. o Nilakantan, G. and Gillespie, J. W. 2012. Ballistic Impact Modeling of Woven Fabrics Considering
Yarn Strength, Friction, Projectile Impact Location, and Fabric Boundary Condition Effects. Composite
Structures, 94(12), 3624-3634. o Nilakantan, G., Wetzel, E. D., Bogetti, T. A. and Gillespie, J. W. 2013. A Deterministic Finite Element
Analysis of the Effects of Projectile Characteristics on The Impact Response of Fully Clamped Flexible
Woven Fabrics. Composite Structures, 95, 191-201.
o
Özgültekin, S. E. 2012. Balistik Zırhlarda Kullanılan Kompozit Malzeme Kombinasyonlarının
İncelenmesi, Yüksek Lisans Tezi, Sakarya Universitesi Fen Bilimleri Enstitüsü, Sakarya. o Roylance, D. 1980. Stress Wave Propagation in Fibers-Effects of Cross Overs, Fibre Science
Technoloji, 13(5), 385-395. o Seely, L., Zimmerman, M. and Mclaughlin, J. 2004. The Use of Zylon Fibers in Uldb Tendons,
Advances in Space Research, 33(10), 1736-1740. o Shi, W., Hu, H., B, Sun., B. and Gu, B. 2011. Energy Absorption of 3D Orthogonal Woven Fabric
Under Ballistic Penetration of Hemispherical- Cylindrical Projectile. The Journal of The Textile
Institute 102(10), 875-889. o Tabiei, A. and Nilakantan, G. 2008. Ballistic Impact of Dry Woven Fabric Composites: A Review,
Applied Mechanics Reviews, 61, 010801-12. o Tan, V. B. C., Lim, C. T. and Cheong, C. H. 2003. Perforation of High-Strength Fabric by Projectiles of
Different Geometry. International Journal of Impact Engineering, 28, 207-222 o Tatsumi, T., Fukuda, S. and Kadomura, S. 1994. Radiation damage of SiO2 surface induced by vacuum
ultraviolet photons of high-density plasma. Japanese journal of applied physics, 33(4S), 2175. o URL-1. http://www.coastalwindsports.com/WhoseLine.html (Alıntının yapıldığı tarih:10.10.2016)
203
Journal of Bartın
Facult
y of Forestry, 2016, 18 (2): 194-204
o
Wall, J.W., 2002, An Investigation of The Ballistic Impact Resistance of Modified 2x1, Four-Step, Three-Dimensionally Braided Composites with Axial Reinforcement, Master of Science, Graduate Faculty of North Carolina State University, Carolina.
o
Wallenberger, F. T., Watson, J. C., and Li, H. 2001. Glass Fibers. Materials Park, OH: ASM International, 27-34.
o
Walling, S. J. 1985. S-2 Glass Fiber: Its Role in Military Applications, International Conference on Composite Materials, Metallurgical Society of AIME, August 1985, p. 443-456
o
Yang, D. 2011. Design, Performance and Fit of Fabrics for Female Body Armour, The Degree of Doctor of Philosophy, Faculty of Engineering and Physical Sciences.
o
Yang, H. H. 1993. Kevlar Aramid Fiber. John Wiley & Sons.
o Yumak, N., Pekbey, Y. and Aslantaş, K. 2013. Zırh Tasarımında Kullanılan Kompozit Malzemelerin Deformasyon Karakteristiğinin Araştırılması. Makine Teknolojileri Elektronik Dergisi, 10(4), 1-21.
o
Zhang, A.D., Sun, Y.A., Chen L., Zhang, S. and Pan, N., 2014b, Influence of Fabric Structure and Thickness on The Ballistic Impact Behavior of Ultrahigh Molecular Weight Polyethylene Composite Laminate. Materials and Design, 54, 315-322.
o
Zhang, C. H., Huang, Y. D., Yuan, W. J. and Zhang, J. N. 2011. UV Aging Resistance Properties of PBO Fiber Coated with Nano-ZnO Hybrid Sizing. Journal of Applied Polymer Science, 120(4), 2468¬2476.
o
Zhang, Q., Fang, X., Sun, X., Sun, B. and Qiu, Y. 2014a. Comparison of The Mechanical Properties Between 2D and 3D Orthogonal Woven Ramie Fiber Reinforced Polypropylene Composites. Polymers & Polymer Composites, 22(2), 187.

Thank you for copying data from http://www.arastirmax.com