You are here

Morphological features and inheritance of a dwarf -growth phenotype in a pea mutant line

Journal Name:

Publication Year:

Abstract (2. Language): 
A dwarf-growth pea mutant recovered after exposing seeds of P. sativum cv Iregi-5 to gamma-irradiation. The main characteristic of the plants was the shortened internode length. The shoot growth of the mutant was less than that of its parent. The line V/4 has shown to have single-gene recessive inheritance, characterized morphologically and for seed production. The early expression of the mutant phenotype makes it desirable characteristic for genetic- and physiological studies of the stem elongation and plant development.
FULL TEXT (PDF): 

REFERENCES

References: 

Ait-Ali, T., Swain, S. M., Reid, J. B., Sun, T., KAMIYA, Y., 1999. Regulation of gibberillin 20-oxydase and gibberillin 3ß-hydroxylase transcript accumulation during de-etiolation of pea seedlings. Plant Physiol. 121. 783-791.
Bret-Harte, M. S., Talbott, L. D. 1993. Changes in composition of the outer epidermal cell wall of pea stems during auxin-induced growth. Planta. 190/3. 369-378.
Davies, P. J., 1995. The plant hormones: their nature, occurrence and functions. In (Ed) Davies, P. J., Plant Hormones:
Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 1-5.
Ingram, T. J., Reid, J. B., Murfet, I. C., Gaskin, P., Willis, C. L., Macmillan, J. 1984. Internode length in Pisum. The Le gene
controls the 3ß-hydroxylasion of gibberellin A20 to gibberellin A1. Planta. 160. 455-463.
Ingram, T. J., Reid, J. B., 1987. Internode length in Pisum: Gene na may block gibberellin synthesis between ent-7-α-hydroxykaurenoic acid and gibberellin A12-aldehyde. Plant Physiol. 83. 1048-1053.
Kizil, S., Tansi, V., Cinar, S. 2010. An investigation on determining the effects of different nitrogen and zinc fertilizer doses
on plant nutrient composition of Sorghum-Sudangrass Hybrid (Sorghum bicolor x Sorghum sudanense) grown as main
crop under Çukurova/Turkey conditions. BioDiCon. 3/3. 26-30
Naidenova, N., Vassilevska-Ivanova, R. 2006. Lodging resistant pea line derived after mutagenic treatment. Compt. Rend.
ABS. 59/3. 317-320.
Naidenova, N., Vassilevska-Ivanova, R. 2008. Assessment of early-flowering pea (Pisum sativum L.) mutant lines. Compt.
Rend. ABS. 61/3. 413-420.
Ngo, P., Ozga, J., Reinecke, D., 2002. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea
pericarp. Plant Mol. Biol. 49/5. 439-448.
Normanly, J., Bartel, B. 1999. Redundancy as a way of life – IAA metabolism. Curr. Opin. Plant Sci. 2. 207-213.
Reid, J. B., Ross, J. J. 1993. A mutant based approach, using Pisum sativum, to understanding plant growth. Int. J. Plant Sci.
154. 22-34.
Reid, J. B., Weller, J. L., Sheriff, L. J. 1996. A more severe mutant allele at the ls locus. Pisum Genet. 28 15-17.
Richards, D. E, King, K. E., Ait–Ali, T., Harbert, N. P. 2001. How gibberellin regulates plant growth and development:
molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52. 67-88.
Rokitskij, P. F. 1967. Biological statistics. Minsk, Vusheichaja skola. (in Russian).
Ross, J., Murfet, I., Reid, B. 1997. Gibberellin mutants. Physiol. Plantarum. 100/3. 550-560.
Swain, S. M., Reid, J. B, Kamiya, Y. 1997. Gibberellins are required for embryo growth and seed development on pea. Plant
J. 12. 423-466.
Symons, M. G., Ross, J., Murfet, I. C., 2002. The bushy pea mutant is IAA-deficient. Physiol. Plantarum. 116. 389-397.
Vassilevska-Ivanova, R., Naidenova, N., Kraptchev, B. 2008. Stability and adaptability in pea (Pisum sativum L.) mutant
lines. Compt. Rend. ABS. 61/7. 955-962

Thank you for copying data from http://www.arastirmax.com