You are here

Polyerystalline CdTe İnce Filmlerin Optik Soğurma (Seri B)

Optical Absorption in Polyerystalline CdTe Thin Films (Series B)

Journal Name:

Publication Year:

Abstract (2. Language): 
The spectral dependence of the absorption coefficients in vacuum deposited polycrystalline CdTe thin films on transparent glass substrate using envelope method is presented over incident photon energies ranging between 0.5-1.6 eV. The method required only a measurement of optical transmittance at normal incidence and is based on the evaluation of the spectral position and the contrast of the interference fringes over a wide range of the incident photon energies. Light absorption at lower photon energies (below bandgap) may be ascribed to the structural imperfections. In this spectral region hypothetical transmittance spectrum, in the case of non-zero absorption displayed a fairly good agreement with the experimental spectrum. As is typical in compound semiconductors, a disorder related exponential absorption (Urbach) tail was observed below the fundamental (mobility) gap. Optical bandgap of as-deposited layers was determined using Tauc equations as ~1.53 eV.
Abstract (Original Language): 
Saydam cam lam üzerine vakumda buharlaştırma tekniğiyle büyütülen çoklu kristal CdTe ince filmlerin soğurma katsayılarının 0.5-1.6eV foton enerji aralığındaki spektral dağılımı verilmektedir. Kullanılan metot sadece normal açı altında optiksel transmisyon ölçümünü gerekli kılar ve girişim saçaklarının spektral genişliklerinin ve spektral konumlarının incelenmesine dayanır. Foton enerjisinin düşük olduğu bölgede ışığın soğurumu yapısal kusurlardan dolayı olabilir. Optik band aralığının dışındaki bölgede teorik olarak hesaplanan transmisyon deneysel olarak elde edilen spektruma oldukça yakın olduğu saptandı. Bileşik yarı-iletkenlere özgü yasak enerji aralığının kenarında yapı düzensizliğiyle ilişkili üstel (Urbach) kuyruğu gözlendi. İşlenmemiş filmlerin optiksel band aralığı Tauc denklemleri kullanılarak ~1.53 eV olarak hesaplandı.
103-116

REFERENCES

References: 

Bayhan, M, PhD Thesis, Preparation and Characterisation of n-CdS/p-CdTe Thin Film Solar Cells
(University of Durham, 1994, pp. 42). Britt, J and Ferekides, C, Thin-Film CdS/CdTe Solar Cell with 15.8% Efficiency, Applied Physics
Letters, 62 (1993), pp. 2851-2852. Burgelman, M, Verschraegen, J, Degrave, S, and Nollet, P, Analysis of CdTe Solar Cells in Relation
to Materials Issues, Thin Solid Films, 480-481, (2005), pp. 392-398 Compaan, A. D, Gupta, A, Lee, S, Wang, S, Drayton, J, High Efficiency Magnetron Sputtered
CdS/CdTe Solar Cells, Solar Energy, 77 (6) (2004), pp. 815-822.
Enloe, W. S, Parker, J. C, Vespoli, J, Meyers, T. H, Harper, R. L, and Schetzina, J. F, An Electroreflectance Study of CdTe, Journal of Applied Physics, 61 (5) (1987), pp. 2005-2010. Hishikawa, Y, Nakamura, N, Tsuda, S, Nakano, S, Kishi, Y, Kuwano, Y, Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films, Japanese Journal of Applied Physics, 30 (1991), pp. 1008-1014. Kushev, D. B, Zheleva, N. N, Demakopoulou, Y, Siapkas, D, A New Method for the Determination of the Thickness, the Optical Constants and the Relaxation Time of Weakly Absorbing Semiconducting Thin Films, Infrared Physics, 26 (1986), pp. 385-393. Laaziz, Y, Bennouna, A, Chahboun, N, Outzourhit, A, Ameziane, E. L, Optical Characterization of Low Optical Thickness Thin Films From Transmittance and Back Reflectance Measurements, Thin Solid Films, 372 (2000), pp. 149-155. Limousin, O, New Trends in CdTe and CdZnTe Detectors for X- and Gamma-ray Applications,
Nuclear Instruments and Methods in Physics Research A, 504 (2003), pp. 24-37. Manifacier, J. C, Gasiot, J, Fillard, J. P, A Simple Method for the Determination of the Optical Constants n, k and the Thickness of a Weakly Absorbing Thin Film, Journal of Physics E: Scientific Instruments, 9 (1976), pp. 1002-1004. Minkov, D, Computation of the Optical Constants of a Thin Dielectric Layer on a Transmitting Substrate from the Reflection Spectrum at Inclined Incidence of Light, Journal of the Optical Society of America A, 8 (2) (1991), pp. 306-310. Olego, D. J, Faurie, J. P, Sivananthan, S, Raccah, P. M, Optoelectronic Properties of Cd1-xZnxTe Films Grown by Molecular Beam Epitaxy on GaAs Substrates, Applied Physics Letters, 47 (11) (1985), pp. 1172-1174. Pankove, J. I, Optical Process in Semiconductors, (New Jersey: Prentice-Hall, Inc., Englewood Cliffs,
1971, pp.36).
Paulson, P. D, Dutta, V, Study of in situ CdCl2 Treatment on CSS Deposited CdTe Films and
CdS/CdTe Solar Cells, Thin Solid Films, 370 (1-2) (2000), pp. 299-306. Pikhtin, A. N, Yas'kov, A. D, Refraction of Light in Semiconductors (Review) Soviet Physics Semiconductors, 22 (6) (1988), pp. 613-626
Poruba, A, Fejfar, A, Reme_, Z, _pringer, J, Van ek, M, Ko_ka, J, Meier, J, Torres, P, Shah, A,
Optical Absorption and Light Scattering in Microcrystalline Silicon Thin Films and Solar Cells, Journal of Applied Physics, 88 (1) (2000), pp. 148-160. Swanepoel, R, Determination of the Thickness and Optical Constants of Amorphous Silicon, Journal
of Physics E: Scientific Instruments., 16 (1983), pp. 1214-1222. Turner, A. K, Woodcock, J. M, Özsan, M. E, Cunningham, D. W, Johnson, D. R, Marshall, R. J, Mason, N. B, Oktik, Ş, Patterson, M. H, Ransome, S. J, Roberts, S, Sadeghi, M, Sherborne, J. M, Sivapathasundaram, D, Walls, I. A, BP Solar Thin Film CdTe Photovoltaic Technology, Solar Energy Materials and Solar Cells, 35, (1994), pp. 263-270. Vedam, K, Spectroscopic Ellipsometry: A Historical Overview, Thin Solid Films, 313-314 (1998), pp.
1-9.
Vriens, L, Rippens, W, Optical Constants of Absorbing Thin Solid Films on a Substrate, Applied Optics, 22 (24) (1983), pp. 4105-4110.
116 116

Thank you for copying data from http://www.arastirmax.com