[1] M. Farkas, ”Dynamical Models in Biology”, Academic Press, (2001).
[2] Z.Ma, J. Li, ”DynamicalModeling and Analysis of Epidemics”,World Scientific Publishing Co. Pte. Ltd., (2009).
[3] M. R. Molaei, T. Waezizadeh, ”A Mathematical Model for HBV”, J. Basic. Appl. Sci. Res., 2(9), 9407-9412
(2012).
[4] J. Li, Z.Ma, F. Zhang, ”Stability Analysis for an Epidemic Model with Stage Structure”, Nonlinear Analysis Real
World Application, (2008), 1672-1679.
[5] L. Cai, X. Li, ”Analysis of a SEIV Epidemic Model with a Nonlinear Incidence Rate”, Applied Mathematical
Modelling, 33,(2009), 2919–2926.
[6] L. Cai, X. Li, ”A Note on Global Stability of an SEI Epidemic Model with a Cute and Chronic Stages”, Applied
Mathematics and Computation 196, (2008), 923–930.
[7] F. Brauer, P. Van den, J. Wu, ”Mathematical Epidemiology”, Springer-Verlag Berlin, (2008).
40 T.Waezizadeh et. al
[8] E. Hairer, G. Wanner, ”Solving Ordinary Differential Equations II: Stiff and Differential-Algebric Problems”,
Berlin, New York: Springer-Verlag, (1996).
[9] X. Dong, C. Wang, G. Xiong, ”Analysis and Simulations of Dynamic Models of Hepatitis B Virus”, Journal of
Mathematics Research, 2, (2010), 12–18.
[10] H. Keyvani, M. Sohrabi, F. Zamani, H. Poustchi, H. Ashrafi, F. Saeedian, M.Mooadi, N. Motamed, H. Ajdarkosh,
M. Khonsari, G. Hemmasi, M. Ameli, A. Kabir, M. Khodadost, ”A Population Based Study on Hepatitis B Virus
in Northern Iran, Amol”, Hepat Mon, 14, (2014), 1–8.
[11] S. Alavian, B. Hajarizadeh, M. Ahmadzad-Asl, A. Kabir, K. Bagheri-Lankarani, ”Hepatitis B Virus Infection in
Iran: A Systematic Review”, Hepatitis Monthly, 8, (2008), 281–294.
[12] B. Behbahani, A. Mafi-Nejad, A. Tabei, S. Z. Lankarani, K. B. Torab, A. Moaddeb, ”Anti-HBC & HBV-DNA
Detection in Blood Donors Negative for Hepatitis B Virus Surface Antigen in Reducing Risk of Transfusion
Associated HBV Infection”, Indian J Med Res, 123, (2006), 37–42.
[13] S. Merat, H. Rezvan, M. Nouraie, A. Jamali, S. Assari, H. Abolghasemi, et al. ”The Prevalence of Hepatitis B
Surface Antigen and Antihepatitis B Core Antibody in Iran: A Population-based Study” Arch Iran Med. 12(3),
(2009), 225–231.
[14] F. Fathimoghaddam, M. R. Hedayati-Moghaddam, H. R. Bidkhori, S. Ahmadi, H. R. Sima, ”The Prevalence of
Hepatitis B Antigen-positivity in the General Population of Mashhad, Iran”, Hepat Mon, 11(5), (2011), 346–350.
[15] G. Zaman, Y. H. Kang, I. H. Jung, ”Stability Analysis and Optimal Vaccination of an SIR Epidemic Model”,
Biosystems, 93(3), (2008), 240–249.
[16] J. Pang, J. A. Cui, X. Zhou, ”Dynamical Behavior of a Hepatitis B Virus Transmission Model with Vaccination”,
Journal of Theoretical Biology, 265(4), (2010), 572–578.
[17] S. Zhang, Y. Zhou, ”The Analysis and Application of an HBV Model”, Applied Mathematics Modelling, 36(3),
(2012), 1302–1312.
[18] N. C. Grassly, C. Fraser, ”Mathematical Models of Infectious Disease Transmission”, Nature Reviews Microbiology,
6, (2008), 477-487.
[19] A. Vahidian Kamyad, R. Akbari, A. A. Heydari, A. Heydari, ”Mathematical Modelling of Transmission Dynamics
and Optimal Control of Vaccination and Treatment for Hepatitis B Virus”, Computational and Mathematical
Methods in Medicine, (2014).
[20] L. Min, Y. Su, Y. Kuang, ”Mathematical Analysis of a Basic Virus Infection Model with Application to HBV
Infection”, Rocky Mountain Journal of Mathematics, 38(5), (2008), 1573–1585.
[21] WHO, Hepatitis B Fact Sheet No. 204, The World Health Organisation, Geneva, Switzerland, 2013,
http://www.who.int/ mediacentre/factsheets/fs204/en/.
[22] L. Wang, R. Xu, ”Mathematical Analysis of an Improved Hepatitis B Virus Model”, International Journal of
Biomathematics, 5(1) (2012).
[23] P. Pasquini, B. Cvjetanovic, ”Mathematical Models of Hepatitis B Infection”, Annali dell’Istituto Superiore di
Sanit, 24(2), (1988), 245–250.
[24] C. Seeger, W. Mason, ”Hepatitis B Virus Biology”, Microbiology and Molecular Biology Reviews, 64, (2000),
51–68.
[25] J. L. Hou, Z. H. Liu, F. Gu, ”Epidemiology Prevention of Hepatitis B Virus Infection”, International Journal of
Medical Sciences, 2, (2005), 50–57.
[26] X. Q. Zhao, ”Dynamical Systems in Population Biology”, Springer-Verlag New York, (2003).
[27] R. Akbari, A. Vahidian, A. A. Heydari, A. Heydari, ”The Analysis of a Disease-free Equilibrium of Hepatitis B
model”, Sahand communiation in mathematical analysis, 3(2), (2016), 1–11.
CUJSE 14, No. 1 (2017) 41
[28] K. Wang, A. Fan, A. Torres, ”Global Properties of an Improved Hepatitis B Virus Model”, Nonlinear analysis:
Real World applications, 11(4), (2010), 3131–3138.
[29] A. R. Mclean, B. S. Blumbery, ”Modelling the Impact of Mass Vaccination Against Hepatitis B. I. Model Formulation
and Parameter Estimation”, Proceedings of the royal society B, 256, (1994), 7–15.
[30] A. M. Elaiw, M. A. Alghamdi, S. Aly, ”Hepatitis B Virus Dynamics: Modeling, Analysis, and Optimal Treatment
Scheduling”, Discrete Dynamics in Nature and Society, 2013, (2013), 1–10.
[31] S. R. Lewin, R. M. Ribeiro, T. Walters et al., ”Analysis of Hepatitis B Viral Load Decline under Potenttherapy:
Complex Decay Profiles Observed, Hepatology, 34(5), (2001), 1012–1020.
[32] M. Y. Li, J. S. Muldowney, ”Global Stability for the SEIR Model in Epidemiology”, Mathematical Bioscience,
125(2), (1995), 64–155.
[33] W. M. Schaffer, T. V. Bronnikova, ”Parametric Dependence in Model Epidemics”, Journal of Biological Dynamics,
1(2), (2007), 183–195.
[34] E. Vynnycky, R. G. White, An Introduction to Infectious Disease Modelling”, Oxford: Oxford University Press,
(2010).
[35] W. O. Kermack, A. G. McKendrick, ”Contributions to the Mathematical Theory of Epidemics. II. The Problem of
Endemicity”, Proceedings of the Royal Society A, 138(834),(1932), 55–83.
Thank you for copying data from http://www.arastirmax.com