[1] E. Abakumov, J. Gordon, Common hypercyclic vectors for multiples of backward shift, J. Funct. Anal., 200(2),
(2003), 494-504.
CUJSE 14, No. 2 (2017) Hypercyclic Weighted Composition Operators on ℓ2(Z) 133
[2] F. Bayart, ´E. Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, Cambridge University
Press, Cambridge, (2009).
[3] J. B`es, Dynamics of weighted composition operators, Complex Anal. Oper. Theory, 8(1), (2014), 159-176.
[4] J. P. B`es, A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal., 167, (1999), 94-112.
[5] G. Costakis, A. Manoussos, J-class weighted shifts on the space of bounded sequences of complex numbers,
Integr. Equ. Oper. Theory, 62(2), (2008), 149-158.
[6] E.A. Gallardo-Gutirrez, A. Montes-Rodrguez, The role of the spectrum in the cyclic behavior of composition
operators, Mem. Amer. Math. Soc., 167(791), (2004).
[7] K.-G. Grosse-Erdmann, A.P. Manguillot, Linear chaos, Universitext, Springer, London, (2011).
[8] B. F. Madore, R. A. Mart´ınez-Avenda˜no, Subspace hypercyclicity, J. Math. Anal. Appl., 373, (2011), 502-511.
[9] Q. Menet, Hypercyclic subspaces and weighted shifts, Advances in Mathematics, 255, (2015), 305-337.
[10] S. Rolewicz. On orbits of elements, Studia Math., 32, (1969), 17-22.
[11] M. D. L. Rosa, C. J. Read. A hypercyclic operator whose direct sum is not hypercyclic, J. Operator Theory, 61(2),
(2009), 369-380.
[12] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc., 347(3), (1995), 993-1004.
[13] J. H. Shapiro, Notes on dynamics of linear operators, www.math.msu.edu/shapiro, (2001).
[14] R. K.Singh, J. S.Manhas, Composition operators on function spaces, North-Holland Mathematics Studies, North-
Holland Publishing Co., Amsterdam, (1993).
[15] B. Yousefi, H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc., 135(10),
(2007), 3263-3271.
Thank you for copying data from http://www.arastirmax.com