You are here

Generalized Jacobi Elliptic Function Method for Traveling Wave Solutions of (2+1)-Dimensional Breaking Soliton Equation

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study, we implemented the generalized Jaçobi elliptiç funçtion method with symboliç çomputation to çonstruçt periodiç and multiple soliton solutions for the (2+1)-dimensional breaking soliton equation.
Abstract (Original Language): 
Bu çalışmada, genelleştirilmiş Jakobi eliptik fonksiyon metodu kullanılarak (2+1) boyutlu breaking soliton denkleminin periyodik çözümleri ve çok katlı soliton çözümleri sembolik bilgisayar programı yardımıyla elde edilmiştir.
39-50

REFERENCES

References: 

[1] L. Debtnath, Nonlinear Partial Differential Equations for Scientist and Engineers, Birkhauser, Boston, MA, 1997.
[2] A.M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema, Rotter¬dam, 2002.
[3] I. Aslan, T. Ozis, Analytiç study on two nonlinear evolution equations by using the (J)-expansion method, Applied Mathematics and Computation 209 (2009), 425-429.
[4] I. Aslan, T. Ozis, On the validity and reliability of the ()- expansion method by using higher-order nonlinear equations, Applied Mathematics and Computation 211 (2009), 531¬536.
[5] A. Bekir, Appliçation of the (J)- expansion method for nonlinear evolution equations, Physics Letters A 372 (2008), 3400-3406.
[6] M. A. Abdou, S. Zhang, New periodiç wave solutions via extended mapping method, Communications in Nonlinear Science and Numerical Simulation 14 (2009), 2-11.
[7] X. Zhao, H. Zhi and H. Zhang, Improved Jaçobi-funçtion method with symboliç çomputation to çonstruçt new double-periodiç solutions for the generalized Ito system, Chaos, Solitons & Fractals 28 (2006), 112-126.
[8] Q. Wang, Y. Chen, Z. Hongqing, A new Jaçobi elliptiç funçtion rational expansion method and its appliçation to (1 + 1)-dimensional dispersive long wave equation, Chaos, Solitons &
Fractals 23 (2005), 477-483.
[9] Y. Yu, Q. Wang, H. Zhang , The extended Jaçobi elliptiç funçtion method to solve a generalized Hirota-Satsuma çoupled KdV equations, Chaos, Solitons & Fractals 26 (2005), 1415-1421.
[10] A. H. Khater, O. H. El-Kalaawy, M.A. Helal, Two new çlasses of exaçt solutions for the KdV equation via Baçklund transformations, Chaos, Solitons & Fractals 12 (1997), 1901-1909.
[11] M. L. Wang, Exaçt solutions for a çompound KdV-Burgers equation, Physics Letters A 213 (1996), 279-287.
[12] M. L. Wang, Y. Zhou, Z. Li, Appliçation of a homogeneous balançe method to exaçt solutions of nonlinear equations in mathematiçal physiçs, Physics Letters A 216 (1996), 67-75.
[13] M. A. Helal, M. S. Mehanna, The tanh method and Adomian deçomposition method for solving the foam drainage equation, Applied Mathematics and Computation 190 (2007), 599¬607.
[14] A. M. Wazwaz, The tanh and the sine-çosine methods for the çomplex modified KdV and the generalized KdV equations, Computers & Mathematics with Applications 49 (2005), 1101¬1112.
[15] B. R. Duffy, E. J. Parkes, Travelling solitary wave solutions to a seventh-order generalized
KdV equation, Physics Letters A 214 (1996), 271-272.
CUJSE 7 (2010), No. 1
49
[16] E. J. Parkes, B. R. Duffy, Travelling solitary wave solutions to a çompound KdV-Burgers
equation, Physics Letters A 229 (1997), 217-220.
[17] A. Borhanifar,
M
. M. Kabir, New periodiç and soliton solutions by appliçation of Exp-funçtion method for nonlinear evolution equations, Journal ofComputational and Applied Mathematics
229 (2009), 158-167.
[18] A. M. Wazwaz, Multiple kink solutions and multiple singular kink solutions for two systems
o
f çoupled Burgers-type equations, Communications in Nonlinear Science and Numerical Sim¬ulation 14 (2009), 2962-2970.
[19] E. Demetriou, N. M. Ivanova, C. Sophoçleous, Group analysis of (2+1)- and (3+1)- dimensional diffusion-çonveçtion equations, Journal of Mathematical Analysis and Applications 348
(2008), 55-65.
[20] Y. Yu, Q. Wang, H. Zhang, The extension of the Jaçobi elliptiç funçtion rational expansion
method, Communications in Nonlinear Science and Numerical Simulation 12 (2007), 702-713. [21] T. Ozis, A. Yıldırım, Reliable analysis for obtaining exaçt soliton solutions of nonlinear
Sçhrödinger
(NLS
) equation, Chaos, Solitons & Fractals 38 (2008), 209-212. [22] A. Yıldırım, Appliçation of He's homotopy perturbation method for solving the Cauçhy
reaçtion-diffusion
problem
, Computers & Mathematics with Applications 57 (2009), 612-618. [23] A. Yıldırım, Variational iteration method for modified Camassa-Holm and Degasperis-Proçesi
equations, Communications in Numerical Methods in Engineering (2008), (in press). [24] T. Ozis, A.Yıldırım, Comparison between Adomian's method and He's homotopy perturbation
method, Computers & Mathematics with Applications 56 (2008), 1216-1224. [25] A.Yıldırım, An Algorithm for Solving the Fraçtional Nonlinear Sçhrodinger Equation by
Means of the Homotopy Perturbation Method, International Journal of Nonlinear Sciences
and Numerical Simulation 10 (2009), 445-451. [26] H. Zhao, H.J. Niu , A new method applied to obtain çomplex Jaçobi elliptiç funçtion solutions
of general nonlinear equations, Chaos, Solitons & Fractals 41 (2009), 224-232. [27] W. Hereman, M. Takaoka, Solitary wave solutions of nonlinear evolution and wave equations
using a direçt method and MACSYMA, Journal of Physics A: Mathematical and General 23
(1990), 4805-4822.
[28] C. Huai-Tang, Z. Hong-Qing, New double periodiç and multiple soliton solutions of the gen¬eralized (2 + 1)-dimensional Boussinesq equation, Chaos, Solitons & Fractals 20 (2004),
765-769.
[29] Y. Chen, Q. Wang, Extended Jaçobi elliptiç funçtion rational expansion method and abundant families of Jaçobi elliptiç funçtion solutions to (1 + 1)-dimensional dispersive long wave equation, Chaos, Solitons & Fractals 24 (2005), 745-757.
[30] E. Fan, J. Zhang, Appliçations of the Jaçobi elliptiç funçtion method to speçial-type nonlinear equations, Physics Letters A, Volume 305 (2002), 383-392.
[31] E. J. Parkes, B. R. Duffy, An automated tanh-funçtion method for finding solitary wave solutions to non-linear evolution equations, Computer Physics Communications 98 (1996),
288-300.
50
Inan
[32] E. Fan, Extended tanh-funçtion method and its appliçations to nonlinear equations, Physics
Letters A 277 (2000), 212-218. [33] S. A. Elwakil, S. K. El-labany, M. A. Zahran and R. Sabry, Modified extended tanh-funçtion
method for solving nonlinear partial differential equations, Physics Letters A 299 (2002),
179-188.
[34] X. Zheng, Y. Chen and H. Zhang, Generalized extended tanh-funçtion method and its appliçation to (1+1)-dimensional dispersive long wave equation, Physics Letters A 311 (2003),
145-157.
[35] E. Yomba, Construçtion of new soliton-like solutions of the (2+1) dimensional dispersive long
wave equation, Chaos, Solitons & Fractals 20 (2004), 1135-1139. [36] H. Chen, H. Zhang, New multiple soliton solutions to the general Burgers-Fisher equation and
the Kuramoto-Sivashinsky equation, Chaos, Solitons & Fractals 19 (2004), 71-76

Thank you for copying data from http://www.arastirmax.com