You are here

PROTEİN OKSİDASYONUNUN KLİNİK ÖNEMİ

Journal Name:

Publication Year:

Abstract (2. Language): 
Oxidative modifications of enzymes and structural proteins play a significant role in the etiology and/or progression of several human diseases. Oxidatively modified amino acids and their derivatives are being used as markers to assess protein oxidation, and new ones are being currently added to the list. Protein carbonyl content is the most general and well-used biomarker of severe protein oxidation. 3-Nitrotyrosine is thought to be a relatively specific marker of protein oxidation mediated by peroxynitrite. Increased concentrations of both protein carbonyls and 3-Nitrotyrosine have been documented in various human diseases. Rapid and recent progress in the identification of oxidized proteins should provide new diagnostic (possibly pre-symptomatic) biomarkers for oxidative damage, and yield basic information to aid the establishment of an efficacious antioxidant therapy.
Abstract (Original Language): 
Enzimlerin ve yapısal proteinlerin oksidatif modifikasyonları çok sayıda hastalığın etyolo-jisi ve/veya ilerlemesinde önemli rol oynar. Oksidatif modifikasyona uğramış amino asitler ile bu amino asitlerin türevleri protein oksidas-yonunu değerlendirmede kullanılmakta ve ye-nileri de güncel olarak listeye eklenmektedir. Protein karbonil içeriği, protein oksidasyonu-nun en genel ve kullanışlı biyomarker’ıdır. 3-Nitrotirozinin peroksinitrit aracılı protein oksi-dasyonunun nispeten spesifik belirteci olduğu CERRAHPAŞA TIP DERGİSİ Cilt (Sayı) 35 (3) 146 düşünülmektedir. Çeşitli hastalıklarda, hem protein karbonil hem de 3-Nitrotirozinnin art-mış konsantrasyonlarının bulunduğu bildiril-mektedir. Okside proteinlerin tanımlanmasın-daki hızlı ve yeni ilerlemeler, oksidatif hasar için yeni tanısal (olasılıkla pre-semptomatik) biyomarker’lar sağlayarak, etkili antioksidan tedavinin oluşturulmasına yardımcı temel bil-giyi kazandırmalıdır.
140-149

REFERENCES

References: 

1. Commoner B, Towsend J, Pake GE. Free radicals in biological materials. Nature 1954; 174: 689-691.
2. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298-300.
3. McCord JM, Fridovich I. Superoxide dismutase; an enzymic function for erythrocuprein (hemocuprein) J Biol Chem 1969; 244: 6049-6055.
4. Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med 1999; 27: 1151-1163.
5. Stadtman ER. Protein modification in aging. J Gerontol 1988; 43: 112-120.
6. Shacter E. Protein oxidative damage. Methods Enzymol 2000; 319: 428-436.
7. Stadtman ER, Levine RL. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. 2003; 25: 207-218.
8. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A. Protein carbonylation in human diseases.Trends in Mol Med 2003; 9: 169-176.
9. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003; 329: 23-38.
10. Çakatay U, Telci A. Oksidatif protein hasarı ve saptanmasında kullanılan marker’lar. Tıp Fak Dergisi 2000; 63: 314-317.
11. Leeuwenburgh C, Rasmussen JE, Hsu FF, Mueller DM, Pennathur S, Heinecke JW. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem 1997; 272: 3520-3526.
12. Fu S, Davies MJ, Stocker R, Dean RT. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J 1998; 333: 519-525.
13. Evans P, Lyras L, Halliwell B. Measurement of protein carbonyls in human brain tissue. Methods Enzymol 1999; 300: 145-156.
14. Grune T, Reinheckel T, Davies KJA. Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 1996; 271: 15504-15509.
15. Siems WG, Zollner H, Grune T, Esterbauer H. Metabolic fate of 4-hydroxynonenal in hepatocytes: 1,4-dihydroxynonene is not the main product. J Lipid Res 1997; 38: 612-622.
16. Pantke U, Volk T, Schmutzler M, Kox WJ, Sitte N, Grune T. Oxidized proteins as a marker of oxidative stress during coronary heart surgery. Free Radic Biol Med 1999; 27: 1080-1086.
17. Griffiths HR. Antioxidant and protein oxidation. Free Radic Res 2000; 33: S47-58.
18. Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 2001; 7: 548-554.
19. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid β-peptide induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 2002; 23: 655-664.
20. Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002; 32: 1050-1060.
21. Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, Gabbita SP, Wu JF, Carney JM. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J Neurochem 1995; 65: 2146-2156.
22. Aksenov M, Aksenova M, Butterfield DA, Markesbery WR. Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. J Neurochem 2000; 74: 2520-2527.
23. Aksenov M, Aksenova M, Butterfield DA,Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience 2001; 103: 373-383.
24. Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I. Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 2002; 33: 562-571.
25. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II. Dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002; 82: 1524-1532.
Temmuz-Eylül 2004 PROTEİN OKSİDASYONU; ÇAKATAY VE KAYALI
147
26. Ando Y, Brannstrom T, Uchida K, Nyhlin N, Nasman B, Suhr O, Yamashita T, Olsson T, El Salhy M, Uchino M, Ando M. Histochemical detection of 4-hydroxynonenal protein in Alzheimer amyloid. J Neurol Sci 1998; 156: 172-176.
27. Calingasan NY, Uchida K, Gibson GE. Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 1999; 72: 751-756.
28. Conrad CC, Marshall PL, Talent JM, Malakowsky CA, Choi C, Gracy RW. Oxidized proteins in Alzheimer’s plasma. Biochem Biophys Res Commun 2000; 275: 678-681.
29. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 1998; 18: 8126-8132.
30. Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Alterations of 3-nitrotyrosine concentration in the cerebrospinal fluid during aging and in patients with Alzheimer’s disease. Neurosci Lett 1999; 269: 52-54.
31. Beal MF. Oxidatively modified proteins in aging and disease. Free Radic Biol Med 2002; 32: 797-803.
32. Almer G, Guegan C, Teismann P, Naini A, Rosoklija G, Hays AP, Chen C, Przedborski S. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol 2001; 49: 176-185.
33. Bowling AC, Barkowski EE, McKenna-Yasek D, Sapp P, Horvitz HR, Beal MF, Brown RHJr. Superoxide dismutase concentration and activity in familial amyotrophic lateral sclerosis. J Neurochem 1995; 64: 2366-2369.
34. Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, Kowall NW, Brown RHJr, Beal MF. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem 1997; 69: 2064-2074.
35. Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 1995; 38: 691-695.
36. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith G, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol 1998; 44: 819-824.
37. Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimizu K, Umegae N, Hayase N. Shiono H, Kobayashi S. Nitration of manganese superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann Neurol 2000; 47: 524-527.
38. Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C. Remarkable increase in cerebrospinal fluid 3-nitrotyrosine in patients with sporadic amyotrophic lateral sclerosis. Ann Neurol 1999; 46: 129-131.
39. Dominguez C, Gussinye M, Ruiz E, Carrascosa A. Oxidative stress at onset and in early stages of Type 1 diabetes in children and adolescents. Diabetes Care 1998; 21: 1736-1742.
40. Telci A, Çakatay U, Salman S, Satman İ, Sivas A. Oxidative protein damage in early stage Type 1 diabetic patients. Diabetes Res Clin Pract 2000; 50: 213-223.
41. Çakatay U, Telci A, Salman S, Satman İ, Sivas A. Oxidative protein damage in type 1 diabetic patients with and without complications. Endocr Res 2000; 26: 365-379.
42. Martin-Gallan P, Carrascosa A, Gussinye M, Dominguez C.Biomarkers of diabetes-associated oxidative stress and antioxidant status in young diabetic patients with or without subclinical complications. Free Radic Biol Med 2003; 34: 1563-1574.
43. Telci A, Çakatay U, Kayalı R, Erdoğan C, Orhan Y, Sivas A. Oxidative protein damage in plasma of type 2 diabetic patients. Horm Metab Res 2000; 32: 40-43.
44. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal malondialdehyde, and related aldehydes. Free Radic Biol Med 1991; 11: 81-128.
45. Santos DL, Palmeira CM, Seica R, Dias J, Mesquita J, Moreno AJ, Santos MS. Diabetes and mitochondrial oxidative stress: a study using heart mitochondria from the diabetic Goto-Kakizaki rat. Mol Cell Biochem. 2003; 246: 163-170.
46. Kayalı R, Çakatay U, Telci A, Akçay T, Sivas A, Altuğ T. Decrease in mitochondrial oxidative protein damage parameters in the streptozotocin-diabetic rat. Diabetes Metab Res Rev 2004: 20: 315-321.
47. Haycock JW, Mac Neil S, Mantle D. Differential protein oxidation in Duchenne and Becker muscular dystrophy. Neuroreport 1998; 9: 2201-2207.
48. Renke J, Popadiuk S, Korzon M, Bugajczyk B, Wozniak M. Protein carbonyl groups content as a useful clinical marker of antioxidant barrier impairment in plasma of children with juvenile chronic arthritis. Free Radic Biol Med 2000; 29; 101-104.
49. Mantle D, Falkous G, Walker D. Quantification of protease activities in synovial fluid from rheumatoid and osteoarthritis cases: comparison with antioxidant and free radical damage markers. Clin Chim Acta 1999; 284: 45-58.
50. Boscia F, Grattagliano I, Vendemiale G, Micelli-Ferrari T, Altomare E. Protein oxidation and lens opacity in humans. Invest Ophthalmol Vis Sci 2000; 41: 2461-2465.
CERRAHPAŞA TIP DERGİSİ Cilt (Sayı) 35 (3)
148
51. Pantke U, Volk T, Schmutzler M, Kox WJ, Sitte N, Grune T. Oxidized proteins as a marker of oxidative stress during coronary heart surgery. Free Radic Biol Med 1999; 27: 1080-1086.
52. Gladstone IMJr, Levine RL. Oxidation of proteins in neonatal lungs. Pediatrics 1994; 93; 764-768.
53. Schock BC, Sweet DG, Halliday HL. Young IS, Ennis M. Oxidative stress in lavage fluid of preterm infants at risk of chronic lung disease. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1386-Ll391.
54. Buss H, Darlow BA, Winterbourn CC. Elevated protein carbonyls and lipid peroxidation products correlating with myeloperoxidase in tracheal aspirates from premature infants. Pediatr Res 2000; 47: 640-645.
55. Ramsay PL, DeMayo FJ, Hegemier SE, Wearden ME, Smith CV, Welty SE. Clara cell secretory protein oxidation and expression in premature infants who develop bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 164: 155-161.
56. Mayer B, Zitta S, Greilberger J, Holzer H, Reibnegger G, Hermetter A, Oettl K. Effect of hemodialysis on the antioxidative properties of serum. Biochim Biophys Acta 2003; 1638: 267-272.
57. Morane M, Cristol JP, Canaud B. Why hemodialysis patients are in prooxidant state? What could be done to correct the pro/antioxidant imbalance. Blood Purif 2000; 18: 191-199.
58. Miyazaki H, Matsuoka H, Itabe H, Usui M, Ueda S, Okuda S, İmaizumi T. Hemodialysis impairs endothelial function via oxidative stress: effects of vitamin E-coated dialyzer. Circulation 2000; 101: 1002-1006.
59. Hirayama A, Nagase S, Gotoh M, Takemura K, Tomida C, Ueda A, Aoyagi K, Terao J, Koyoma A. Hemodialysis does not influence the peroxidative state already present in uremia. Nephron 2000; 86: 436-440.
60. Himmelfarb J, McMenamin ME, Loseto G, Heinecke JW. Myeloperoxidase catalysed 3-chlorotyrosine formation in dialysis patients. Free Radic Biol Med 2001; 31: 1163-1169.
61. Peuchant E, Carbonneau MA, Dubourg L, Thomas MJ, Perromat A, Clerc M. Lipoperoxidation in plasma and red blood cells of patients undergoing haemodialysis: vitamin A, E and iron status. Free Radic Biol Med 1994; 16: 339-346.
62. Himmelfarb J, McMonagle E, McMenamin E. Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney Int 2000; 58: 2571-2578.
63. Himmelfarb J, McMonagle E. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int 2001; 60: 358-363.
64. Agarwal R. Proinflammatory effects of oxidative stress in chronic kidney disease: role of additional angiotensin II blockade. Am J Physiol Renal Physiol 2003; 284: F863-F869.
65. Lim PS, Cheng YM, Wei YH. Increase in oxidative damage to lipids and proteins in skeletal muscle of uremic patients. Free Radic Res 2002; 36: 295-301.
66. Miyata T, Ueda Y, Saito A, Kurokawa K. Carbonyl stress and dialysis-related amyloidosis. Nephrol Dial Transplant 2000; 15: 25-28.
67. Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: Origin and significance of carbonyl stress in long-term uremic complications. Kıdney Int 1999; 55: 389-391.
68. Singh R, Barden A, Mori T, Beilin T. Advanced glycation end-products: a review. Diabetologia 2001; 44: 129-146.
69. De Maria N, Colantoni A, Fagiuoli S, Liu GJ, Rogers BK, Farinati F, Van Thiel DH, Floyd RA. Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic Biol Med 1996; 21: 291-295.
70. McGrath LT, Patrick R, Mallon P, Dowey L, Silke B, Norwood W, Elborn S. Breath isoprene during acute respiratory exacerbation in cystic fibrosis. Eur Respir J 2000; 16: 1065-1069.
71. Yılmaz İA, Akçay T, Çakatay U, Telci A, Ataus S, Yalçın V. Relation between bladder cancer and protein oxidation. Int Urol Nephrol 2003; 35: 345-350.
72. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 1997; 69: 1326-1329.
73. Good PF, Hsu A, Werner P, Perl DP, Olanow CW. Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 1998; 57: 338-339.
74. Shergill JK, Cammack R, Cooper JM, Mann VM, Schapira AHV. Detection of nitrosyl complexes in human substantia nigra, in relation to Parkinson’s disease. Biochem Biophys Res Commun 1996; 228: 298-305.
75. Aoyama K, Matsubara K, Fujikawa Y, Nagahiro Y, Shimuzu K, Umegae N, Hayase N, Shiono N, Kobayashi S. Nitration of manganase superoxide dismutase in cerebrospinal fluids is a marker for peroxynitrite-mediated oxidative stress in neurodegenerative diseases. Ann Neurol 2000; 47: 524-527.
76. Fenkci V, Fenkci S, Yılmazer M, Serteser M. Decreased total antioxidant status and increased oxidative stress in women with polycystic ovary syndrome may contribute to the risk of cardiovascular disease. Fertility and Sterility 2003; 80: 123-127.
77. Patrick T, Roberts JM. Current concepts in preeclampsia. Maternal Child Nursing 1999; 24: 193-201.
Temmuz-Eylül 2004 PROTEİN OKSİDASYONU; ÇAKATAY VE KAYALI
149
78. Van Wijk MJ, Kublickiene K, Booer K, Van Bavel E Vascular function in preeclampsia. Cardiovasc Res 2000: 47; 38-48.
79. Zusterzeel PL, Rütten H, Roelofs HM, Peters WH, Steegers EA. Protein carbonyls in decidua and placenta of pre-eclamptic women as markers for oxidative stress. Placenta 2001; 22: 213-219.
80. Serdar Z, Gür E, Çolakoğullar M, Develioğlu O, Sarandöl E. Lipid and protein oxidation and antioxidant function in women with mild and severe preeclampsia. Arch Gynecol Obstet 2003: 268; 19-25.
81. Dimon-Gadal S. Increased oxidative damage to fibroblast in skin with and without lesions in psoriasis. J Invest Dermatol 2000; 114; 984-989.
82. Winterbourn CC, Buss IH, Chan TP, Plank LD, Clark MA, Windsor JA. Protein carbonyl measurements show evidence of early oxidative stress in critically ill patients. Crit Care Med 2000; 28: 143-149.
83. Chen SS, Chang LS, Wei YH. Oxidative damage to proteins and decrease of antioxidant capacity in patients with varicocele. Free Radic Biol Med 2001; 30: 1328-1334.

Thank you for copying data from http://www.arastirmax.com