You are here

Deforme 166Gd Çekirdeğinde Sözdespin Çiftlerinin Özellikleri

Properties of Pseudospin Partners in Deformed 166Gd Nucleus

Journal Name:

Publication Year:

Abstract (2. Language): 
Pseudospin symmetry was observed in spherical nuclei about fifty years ago. Origin of the symmetry has been not found until the last decade. In recent decade, it was understood that this symmetry appears when there are equal in magnitude attractive scalar and repulsive vector potentials (but they have opposite sign) in nuclei. This situation can provide possibility to investigate pseudospin symmetry within the relativistic mean field (RMF) theory which has been used to carry out many ground-state properties of nuclei successfully, because RMF theory includes the near equality in magnitude attractive scalar and repulsive vector potentials. Restoration of the single-particle energy levels within the framework of the pseudospin symmetry is different from usual restoration of single-particle energy levels. Because of this reason, an investigation of how change the single-particle spectra according to the deformation of nuclei can be interesting. In this study, the change of pseudospin partners according to quadrupole deformation parameter in the neutron and proton single-particle spectrum of the 166Gd nucleus which is known well deformed experimentally are investigated within the RMF theory. Also, the concepts of pseudospin symmetry and RMF theory are given in detail.
Abstract (Original Language): 
Sözdespin simetrisi küresel çekirdeklerde elli yıl kadar önce gözlenmiştir. Uzun yıllar kaynağı anlaşılamayan bu simetrinin on yıl kadar önce çekirdek içerisinde eşit büyüklükte ancak zıt işaretli çekici skaler ve itici vektör potansiyeller varlığında ortaya çıktığı anlaşılmıştır. Bu durum yaklaşık bir biçimde bu tür potansiyelleri içeren ve çekirdeklerin birçok taban-durum özelliklerinin ortaya çıkarılmasında başarılı bir biçimde kullanılan relativistik ortalama alan (RMF) teorisinin sözdespin simetrisi incelemelerinde kullanılmasını mümkün kılmaktadır. Bu simetri çerçevesinde tek-parçacık enerji seviyelerinin kuantum sayılarına göre yerleşimlerinin gösterimi klasik gösterimden farklılık göstermektedir. Bu bağlamda sözdespin simetrisi çerçevesinde tek-parçacık enerji seviyelerinin çekirdek deformasyonuna bağlı olarak değişiminin incelenmesi ilginç olabilir. Bu nedenle bu çalışmada RMF teorisi çerçevesinde deforme olduğu deneysel olarak iyi bilinen 166Gd çekirdeğinin nötron ve proton tek-parçacık enerji seviyelerindeki sözdespin çiftlerinin kuadrupol deformasyon parametresine göre değişimi incelenmiştir. Ayrıca sözdespin kavramı ve RMF teorisi detaylıca irdelenmiştir.
8-24

REFERENCES

References: 

[1] A. Arima, M. Harvey ve K. Shimizu, 1969. Pseudo LS Coupling and Pseudo SU3 Coupling Schemes, Phys. Lett. B 30, 517-522.
[2] K.T. Hecht ve A. Adler, 1969. Generalized seniority for favored J≠0 pairs in mixed configurations. Nucl. Phys. A 137, 129-143.
[3] R.D. Ratna, J.P. Draayer ve K.T. Hecht, 1973. Search for a coupling scheme in heavy deformed nuclei: The pseudo SU(3) model. Nucl. Phys. A 202, 433-466.
[4] A.L. Blokhin, T. Beuschel, J.P. Draayer ve C. Bahri, 1997. Pseudospin and Nuclear Deformation. Nucl. Phys. A 612, 163-203.
[5] J. Dudek, W. Nazarewicz, Z. Szymanski ve G.A. Leander, 1987. Abundance and systematics of nuclear superdeformed states; relation to the pseudospin and pseudo-SU(3) symmetries. Phys. Rev. Lett. 59, 1405-1408.
[6] W. Nazarewicz, P.J. Twin, P. Fallon ve J.D. Garrett, 1990. Natural-parity States in Superdeformed Bands and Pseudo SU(3) Symmetry at Extreme Conditions. Phys. Rev. Lett. 64, 1654–1657.
[7] B. Mottelson, 1991. Some Themes in the Study of Very Deformed Rotating Nuclei. Nucl. Phys. A 522, 1-12.
[8] J.Y. Zeng, J. Meng, C.S. Wu, E.G. Zhao, Z. Xing ve X.Q. Chen, 1991. Spin Determination and Quantized Alignment in the Superdeformed Bands in 152Dy,151Tb, and 150Gd. Phys. Rev. C 44, 1745-1748.
[9] A. Bohr, I. Hamamoto ve B.R. Molttelson, 1982. Pseudospin in Rotating Nuclear Potentials. Physica Scripta 26, 267-272.
[10] C. Bahri, J. P. Draayer ve S.A. Moszkowski, 1992. Pseudospin Symmetry in Nuclear Physics. Phys. Rev. Lett, 64, 2133-2136.
[11] O. Castanos, M. Moshinsky ve C. Quesne, 1992. Transformation to Pseudo-SU (3) in Heavy Deformed Nuclei. Phys. Lett. B 277, 238-242.
[12] J.N. Ginocchio, 1997. Pseudospin as a Relativistic Symmetry. Phys. Rev. Lett. 78, 436-439.
[13] J.N. Ginocchio ve A. Leviatan, 1998. On the Relativistic Foundations of Pseudospin Symmetry in Nuclei. Phys. Lett. B 425, 1-5.
[14] B.D. Serot ve J.D. Walecka, 1986. The relativistic nuclear many-body problem. Adv. Nucl. Phys. 16, 1-320.
[15] Y.K. Gambhir, P. Ring ve A. Thimet, 1990. Relativistic mean field-theory for finite nuclei. Ann. Phys. 198, 132-179.
[16] J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long ve L.S. Geng, 2006. Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei. Prog. Part. Nucl. Phys. 57, 470-563.
[17] T. Bayram, 2012. Relativistik Ortalama Alan Modelinde Çekirdek Taban Durum Özellikleri. Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
[18] A.H. Yılmaz ve T. Bayram, 2011. A Detailed Investigation on the Ground-state Nuclear Properties of Even-even Mo Isotopes by Using the Relativistic Mean Field Approach. Journal of the Korean Physical Society 59, 3329-3336.
[19] A. H. Yılmaz, T. Bayram, M. Demirci ve B. Engin, 2010. Ground-State Properties of Some Rare Earth Nuclei in Relativistic Mean Field Theory. Azerbaijan Journal of Physics: Fizika 16, 544-546.
[20] A. H. Yılmaz ve T. Bayram, 2011. Axially Deformed Relativistic Mean Field Calculations on the Properties of Isotopic Chain of Superheavy Nuclei. Balkan Physics Letters 19, 85-94.
[21] G.A. Lalazissis, Y.K. Gambhir, J.P. Maharana, C.S. Warke ve P. Ring, 1998. Relativistic Mean Field Approach and the Pseudospin Symmetry. Phys. Rev. C 58, 45-48.
[22] J.N. Ginocchio, 2005. Relativistic Symmetries in Nuclei and Hadrons. Physics Reports 414, 165-261.
[23] R. Lisboa, M. Malherio, A.S. de Casto, P. Alberto ve M. Fiolhais, 2004. Pseudospin Symmetry and the Relativistic Harmonic Oscillator. Phys. Rev. C 69, 024319.
[24] J.D. Walecka, 1974. A Theory of Highly Condensed Matter. Annals of Physics 83, 491-529.
[25] J. Boguta ve A.R. Bodmer, 1977. Relativistic Calculation of Nuclear Matter and the Nuclear Surface. Nucl. Phys. A 292, 413-428.
[26] P. Ring, Y.K. Gambhir ve G.A. Lalazissis, 1997. Computer Program for Relativistic Mean Field Description of the Ground-State Properties of Even-Even Axially Deformed Nuclei. Comput. Phys. Commun. 105, 77-97.
[27] G.A. Lalazissis, J. Konig ve R. Ring, 1997. New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540-543.
[28] G.A. Lalazissis, S. Karatzikos, R. Fossion, A.D. Pena, A.V. Afanasjev ve P. Ring, 2009. The Effective Force NL3 revisited. Phys. Lett. B 671, 36-41.
[29] G. Audi, A.H. Wapstra ve C. Thibault, 2003. The AME2003 Atomic Mass Evaluation. Nucl. Phys. A 729, 337-676.

Thank you for copying data from http://www.arastirmax.com