You are here

De-Sitter Uzayında Sabit Açılı Zamansal Yüzeyler

Timelike Surfaces With Constant Angle in de-Sitter Space 3

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.17776/csj.84703
Abstract (2. Language): 
In this paper, we study a special class of timelike surface which is called constant timelike angle surfaces in de Sitter space 31S . In 3 1S , conditions being a constant angle timelike surface have been determined and invariants of these surface have been investigated. In here, we use the angle between unit normal vector field of surfaces and a fixed spacelike axis in ambient space.
Abstract (Original Language): 
Bu çalışmada, yüzeyin birim normal vektör alanı ve 4 1R de sabit bir uzaysal eksen arasındaki açıyı kullanarak, de-Sitter uzayında sabit zamansal açılı yüzeyler olarak adlandırılan zamansal yüzeylerin özel bir sınıfı geliştirilmiştir.
1
11

REFERENCES

References: 

[1]. R. Lopez, M.I. Munteanu, Constant angle surfaces in Minkowski space, Bulletin of the Belgian
Math. So. Simon Stevin, Vo.18 (2011) 2, (271-286).
[2]. S.Izumıya, K.Sajı, M.Takahashı, Horospherical flat surfaces in Hyperbolic 3-space,
J.Math.Soc.Japan, Vol.87 (2010), (789-849).
[3]. S.Izumıya, D.Peı, M.D.C.R. Fuster, The horospherical geometry of surfaces ın hyperbolic 4-
spaces, Israel Journal of Mathematıcs, Vol.154 (2006), (361-379).
[4]. C.Thas, A gauss map on hypersurfaces of submanıfolds ın Euclıdean spaces, J.Korean Math.Soc.,
Vol.16, No.1, (1979).
[5]. S.Izumıya, D.Peı, T.Sano, Sıngularities of hyperbolic gauss map, London Math.Soc. Vol.3
(2003), (485-512).
[6]. M.I.Munteanu, A.I.Nistor, A new approach on constant angle surfaces in 3E , Turk T.Math.
Vol.33 (2009), (169-178).
[7]. C.Takızawa, K.Tsukada , Horocyclic surfaces in hyperbolic 3-space, Kyushu J.Math. Vol.63
(2009), (269-284).
[8]. S.Izumıya, M.D.C.R. Fuster, The horospherical Gauss-Bonnet type theorem in hyperbolic space,
J.Math.Soc.Japan, Vol.58 (2006), (965-984).
[9]. B. O'Neill, Semi-Riemannıan Geometry with applications to relativity, Academic Press, New
York, 1983.
[10]. W.Fenchel , Elementary Geometry in Hyperbolic Space, Walter de Gruyter , New York , 1989.
[11]. J.G.Ratcliffe, Foundations of Hyperbolic Manifolds, Springer 1948.
[12]. P.Cermelli, A.J. Di Scala, Constant angle surfaces in liquid crystals, Phylos. Magazine,Vol.87
(2007),(1871-1888).
[13]. A.J. Di Scala, G. Ruiz-Hernandez, Helix submanifolds of Euclidean space, Monatsh. Math. DOI
10.1007 / s00605-008-0031-9.
[14]. G.Ruiz-Hernandez, Helix, shadow boundary and minimal submanifolds, Illinois J. Math. Vol.52
(2008),(1385-1397).
[15]. F. Dillen, J. Fastenakels, J. Van der Veken, L. Vrancken, Constant angle surfaces in 2 SR ,
Monaths. Math. , Vol.152 (2007), (89-96).
[16]. F. Dillen and M. I. Munteanu, Constant angle surfaces in H2 R , Bull. Braz. Math. soc. , Vol.40
(2009), (85-97).
[17]. J. Fastenakels, M. I: Munteanu , J. Van der Veken, Constant angle surfaces in the Heisenberg
group, Acta Math. Sinica (English Series) Vol.27 (2011), (747-756).
[18]. R.Lopez, Differantial Geometry of Curves and Surfaces in Lorentz-Minkowski space, arXiv:
0810.3351 (2008).
[19]. Mert.T, Karliğa.B, Constant Angle Spacelike Surface in Hyperbolic Space 3 H , J. Adv. Res.
Appl. Math., 7(2015), no 2, (89-102).
[20]. Mert.T, Karliğa.B, Constant Angle Spacelike Surface in de Sitter Space 3
1 S , Boletim da
Sociedade Paranaense de Mathematica (Accepted).
[21]. Mert.T, Karliğa.B, On The Timelike Surface with Constant Angle in Hyperbolic Space 3 H ,
CBU Journal of Science (Accepted).
[22]. M. Kasedou , Spacelike submanifolds in de sitter space, demonstratio Mathematica , Vol.XLIII
(2010) , 2.

Thank you for copying data from http://www.arastirmax.com