You are here

Farklı Test Sistemleri ile Somatik Hücrelerde Profenofos Genotoksisitesine Karşı Kuşburnu (Rosa canina L.) Ekstrelerinin Doğal Bir Antigenotoksik Ajan Olarak Kullanılması

The Usage of Rosa canina L. Extracts As a Natural Anti-Genotoxic Agents Against the Genotoxicity of Profenofos on Somatic Cells by Different Test Systems

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.17776/csj.10890
Abstract (2. Language): 
In this study, the genotoxic effects of profenofos insecticide were investigated with the somatic mutation and recombination test (SMART) in Drosophila melanogaster and the micronucleus test (MN) in human peripheral lymphocytes. The water and ethanol extracts of rosehip plants (Rosa canina) were used to remove possible genotoxic effects of this substance. When the wing preparates of D.melanogaster were examined for the SMART, it was observed that mutation frequency in normal wing phenotype increased depending on doses of profenofos (0,025, 0,05, 0,075 ve 0,1ppm) and this increase was positive effect (+) in the highest application group (0,1 ppm), especially. The increase in mutation frequency of the serrate wings phenotype was found insignificant (i) in the all application groups (P>0,05). When the water (RCwtr) and ethanol (RCeth) extracts of the rosehip plants were applied together with the highest application concentration of profenofos (profenofos+ RCwtr/RCeth), it was observed that the increase in the mutation frequency decreased and this decrease was statistically significant (P<0,05). In this study, the mutation frequency increased and nuclear division index (NBI) decreased in the human lymphocyte cells with in vitro profenofos application in the different concentration were showed (P<0,05). But as the MN frequencies decreased, NBI values approached to control group with profenofos+RCwtr and RCeth applications (P<0,05).
Abstract (Original Language): 
Bu çalışmada, profenofos insektisitinin genotoksik etkileri, Drosophila melanogaster’de somatik mutasyon ve rekombinasyon testi (SMART) ve insan periferal lenfosit hücrelerinde mikronükleus (MN) testi ile araştırılmıştır. Bu maddenin olası genotoksik etkilerinin giderilebilmesi için de kuşburnu (Rosa canina) bitkisine ait su ve etanol ekstreleri kullanılmıştır. SMART için D.melanogaster’in kanat preparatları incelendiği zaman, profenofosun artan konsantrasyonuna (0,025, 0,05, 0,075 ve 0,1ppm) bağlı olarak normal kanat fenotipinde mutasyon frekansının arttığı özellikle en yüksek uygulama grubunda (0,1 ppm) bu artışın pozitif etkili (+) olduğu gözlenmiştir (P<0,05). Serrat kanat fenotipinde ise mutasyon frekansındaki artış tüm uygulama gruplarında önemsiz etkili (i) bulunmuştur (P>0,05). Kuşburnu bitkisinin su (RCsu) ve etanol (RCeta) ekstreleri, profenofosun en yüksek konsantrasyonu (0,1 ppm) ile birlikte uygulandığı zaman (profenofos+ RCsu/RCeta) mutasyon frekansındaki artışın azaldığı ve bunun da istatistiksel olarak önemli olduğu gözlenmiştir (P<0,05). Bu çalışmada, farklı konsantrasyonlarda in vitro profenofos uygulaması (0,25, 0,5, 0,75 ve 1ppm) ile insan periferal lenfosit hücrelerinde mikronükleus frekansının arttığı ve nükleer bölünme indeksinin (NBİ) azaldığı da görülmüştür (P<0,05). Ancak profenofos+RCsu ve RCeta uygulamaları ile mikronükleus frekansı düşerken NBİ değeri de kontrol grubuna yaklaşmıştır (P<0,05).
30
40

REFERENCES

References: 

[1]. Moustafa G.G., Ibrahim Z.S., Hashimoto Y., Alkelch A.M., Sakamoto K.Q., Ishizuka M., Fujita S., (2007). Testicular toxicity of profenofos in matured male rats. Arch Toxicol, 81, 875–881.
[2]. Habiba R.A., Ali H.M., Ismail S.M., (1992). Biochemical effects of profenofos residues in potatoes. J. Agric. Food Chem, 40, 1852–1855.
[3]. He J., Fan M., Liu X., (2010). Environmental behavior of profenofos under paddy field conditions. Bull Environ Contam Toxicol, 84, I771–774.
[4]. İsmail M., Ali R., Ali T., Waheed U., Khan Q.M., (2009). Evaluation of the acute toxicity of profenofos and its effects on the behavioral pattern of fingerling common carp (Cyprinus carpio L., 1758). Bull Environ Contam Toxicol; 82, 569–573.
[5]. Hammam F.M., Abd el Mottaleb E.M., (2007). Studies of the genotoxic and histopathological effects of the organophosphorous insecticide 'profenofos' on white rats. The Egypt J Hosp Med, 29, 685–706.
[6]. Prabhavathy Das G., Pash A., Jamil S., Jamil K., (2006). Estimation of apoptosis and necrosis caused by pesticides in vitro on human lymphocytes using DNA diffusion assay. Drug Chem Toxicol, 29, 147–156.
[7]. Li X., Li S., Liu S., Zhu G., (2010). Lethal effect and in vivo genotoxicity of profenofos to Chinese native amphibian (Rana spinosa) tadpoles. Arch Environ Contam Toxicol, 59, 478–483
[8]. Principe P., (1991). Monetizing the Pharmacological Benefits of Plants, US Environmental Protection Agency, Washington DC.
[9]. Cowan M.M., (1999). Plant products as antimicrobial agents. Clin Microbiol Rev; 12, 564–582.
[10]. Tumbas V.T., Čanadanovic-Brunet J.M., Cetojevic-Simin D.D., Cetkovic G.S., Dilas S.M., Gille L., (2012). Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J Sci Food Agric, 92, 1273–1281.
[11]. Willich S.N., Rossnagel K., Roll S., Wagner A., Mune O., Erlendson J., Kharazmi A., Sörensen H., Winther K., (2010). Rose hip herbal remedy in patients with rheumatoid arthritis – a randomised controlled trial. Phytomedicine, 17, 87–93.
Farklı Test Sistemleri ile Somatik Hücrelerde Profenofos Genotoksisitesine Karşı
39
[12]. Orhan N., Aslan M., Hosbas S., Deliorman O.D., (2009). Antidiabetic affect and antioxidant potential of Rosa canina fruits. Phcog Mag, 5, 309–315.
[13]. Pieroni A., Quave C.L., (2005). Traditional pharmacopoeias and medicines among Albanians and Italians in southern Italy: A comparison. J Ethnopharmacol 101, 258–270.
[14]. Ercisli S., (2007). Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem, 104, 1379–1384.
[15]. Montazeri N., Baher E., Mirzajani F., Barami Z., Yousefian S., (2011). Phytochemical contents and biological activities of Rosa canina fruit from Iran. J Med Plants Res, 5, 4584–4589.
[16]. Serteser A., Kargioglu M., Gok V., Bagci Y., Ozcan M.M., Arslan D., (2008). Determination of antioxidant effects of some plant species wild growing in Turkey. Int J Food Sci Nutr, 59, 643–651.
[17]. Graf U., Würgler F.E., Katz A.J., Frei H., Juon H., Hall C.B. and Kale P.G., (1984). Somatic mutation test in Drosophila melanogaster. Environ Mol Mutagen, 6, 153-188.
[18]. Frei H., Würgler F.E., (1996). Induction of somatic mutation and recombination by four inhibitors of eukaryotic topoisomerases assayed in the wing spot test of Drosophila melanogaster. Mutagenesis, 11, 315–325.
[19]. Fenech M., Chang W.P., Kirsch-Volders M., Holland N., Bonassi S., Zeiger E., (2003). HUMN project: detailed description of the scoring criteria for the cytokinesis-block micronucleus assay using isolated human lymphocyte cultures. Mutat Res-Gen Tox En, 534, 65–75.
[20]. Kocaman A.Y., Topaktas M., (2009). The in vitro genotoxic effects of a commercial formulation of a-cypermethrin in human peripheral blood lymphocytes. Environ Mol Mutagen, 50, 27–36.
[21]. Cakir A., Kordali, S., Kilic, H., Kaya, E., (2005). Antifungal properties of essential oil and crude extracts of Hypericum linarioides Bosse. Biochem Syst Ecol, 33, 245–256.
[22]. Halici M., Odabasoglu F., Suleyman H., Cakir A., Aslan A., Bayir Y., (2005). Effects of water extract of Usnea longissima on antioxidant enzyme activity and mucosal damage caused by indomethacin in rats. Phytomedicine, 12, 656–662.
[23]. Reddy N.C., Rao J.V., (2008). Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicol Environ Saf, 71, 574–582.
[24]. El Nahas S.M., De Hondt H.A., Abdou H.E., (1989). Chromosome aberrations in spermatogonia and sperm abnormalities in Curacron treated mice. Mutat Res, 222, 409–414.
[25]. El-Hoda N., Zidan A., (2009). Evaluation of the reproductive toxicity of chlorpyrifos methyl, diazinon and profenofos pesticides in male rat. Int J Pharmacol, 5, 51–57.
[26]. Abdullah A.R., Kumar A., Chapman J.C., (1994). Inhibition of acetylcholinesterase in the Australian freshwater shrimp (Paratya australiensis) by profenofos. Environ Toxicol Chem, 13, 1861–1866.
[27]. Fahmy M.A., Abdalla E.F., (1998). Genotoxicity evaluation of buprofezin, petroleum oil and profenofos in somatic and germ cells of male mice. J Appl Toxicol, 18, 301–305.
[28]. Mansour M.K., El-Kashoury A.A.I., Rashed M.A., Koretem K.M., (2009). Oxidative and biochemical alterations induced by profenofos insecticide in rats. Nat Sci, 7, 1–15.
[29]. Kavitha P., Rao J.V., (2009). Sub-lethal effects of profenofos on tissue-specific antioxidative responses in a Euryhyaline fish, Oreochromis mossambicus. Ecotoxicol Environ Saf, 72, 1727–1733
KASIMOĞLU, UYSAL
40
[30]. Karakaya S., Kavas A., Antimutagenic activities of some foods. J Sci Food Agr 1999; 79, 237–242.
[31]. Kızılet H., Kasimoğlu C., Uysal H., (2013). Can the Rosa canina plant be used against alkylating agents as a radical scavenger? Pol J Environ Stud, 22, 1263–1267.
[32]. Kasimoglu C., Uysal H., (2015). Mutagenic biomonitoring of pirethroid insecticides in human lymphocyte cultures: Use of micronuclei as biomarkers and recovery by Rosa canina extracts of
[33]. Kılıçgün H., Dehen A., (2009). In vitro antioxidant effect of Rosa canina in different antioksidant test systems. Pharmacog Res, 1, 417–420.
[34]. Westhuizen F.H., Rensburg C.S., Rautenbach G.S., Marnewick J.L., Loots T., Huysamen C., Louw R., Pretorius P.J., Erasmus E., (2008). In vitro antioksidant, antimutagenic and genoprotective activity of Rosa roxburghii fruit extract. Phytother Res, 22, 376–383.
[35]. Khadem S., Marles R.J., (2010). Monocyclic phenolic acids; hydroxy-and polyhydroxybenzoic acids: Occurrence and recent bioactivity studies. Molecules, 15, 7985–8005.
[36]. Anter J., Romero-Jimenez M., Fernandez-Bedmar Z., Villatoro-Pulido M., Analla M., Alonso-Moraga A., Munoz-Serrano A., (2011). Antigenotoxicity, cytotoxicity, and apoptosis induction by apigenin, bisabolol, and protocatechuic acid. J Med Food,14, 276–283.
[37]. Hvattum E., (2002). Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography coupled to electrospray ionisation tandem mass spectrometry and diode-array detection. Rapid Commun Mass Spectrom, 16, 655–662.
[38]. Lee S.C., Kwon Y.S., Son K.H., Kim H.P., Heo M.Y., (2005). Antioxidative constituents from Paeonia lactiflora. Arch Pharm Res, 28, 775–783.
[39]. Kaya B., (2003). Anti-genotoxic effect of ascorbic acid on mutagenic dose of three alkylating agents. Turk J Biol, 27, 241–246.
[40]. Gao X., Björk L., Trajkovski V., Uggla M., (2000). Evaluation of antioxidant activities of rosehip ethanol extracts in different test systems. J Sci Food Agr, 80, 2021–2027.
[41]. Daels-Rakotoarison D.A., Gressier B., Trotin F., Brunet C., Luyckx M., Dine T., Bailleul F., Cazin M., Cazin J.C., (2002). Effects of Rosa canina fruit extract on neutrophil respiratory burst. Phytother Res, 16, 157–161.
[42]. Roman I., Stanila A., Stanila S., (2013). Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania, Chem Cent J., 7, 73.
[43]. Kadakal Ç., Gürsoy O., Nergiz C., (1999). Gümüşhane yöresinde doğal olarak yetişen kuşburnu (Rosa canina L.) bitkisinin meyve ve çekirdeğinin bazı fiziksel ve kimyasal özellikleri, Gıda Bilimi ve Teknolojisi Dergisi, 4, 34-41.

Thank you for copying data from http://www.arastirmax.com