You are here

Lif Boyu ve Su/Çimento Oranının Ultra Yüksek Dayanımlı Fiber Katkılı Betonların Basınç Dayanımlarına Etkileri

The Effects of Fiber Length and Water/Cement Ratio on Compressive Strength of Ultra High Strength Fiber Reinforced Concrete

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.17776/csj.24569
Abstract (2. Language): 
In this study, the effect of using different length of fiber (16 mm and 30 mm) and different ratio of water/cement (0.21 and 0.31) on compressive strength of ultra-high strength fiber reinforced concrete (UHSFRC) was examined. The UHSFRC samples were subject to compressive strength experiment on the 7th, 14th and 28th days. The compressive strength values for different fiber lengths and different water/cement ratios were evaluated. The results of study was shown, the results for samples prepared using steel fibers with length of 16 mm and 0.21 water/cement ratio was obtained better results than samples prepared using steel fibers with length of 30 mm and 0.31 water/cement ratio.
Abstract (Original Language): 
Bu çalışmada, farklı lif boylarının (16 mm ve 30 mm) ve farklı su/çimento oranlarının (0.21 ve 0.31) ultra yüksek dayanımlı fiber katkılı betonların (UYDFKB) basınç dayanımlarına olan etkileri incelenmiştir. Basınç dayanımı testleri numunelerin 7., 14. ve 28. yaşlarında yapılarak, değerler farklı lif boyları ve farklı su/çimento oranları için değerlendirilmiştir. Su/çimento oranı arttıkça basınç dayanımlarının azaldığı, lif boylarındaki artışın basınç dayanımında önemli olmayacak miktarda düşürdüğü gözlenmiştir. Çalışma sonucunda, 16 mm uzunluğunda çelik lifli ve 0.21 su çimento oranına sahip karışımın, 30 mm uzunluğunda çelik lifli ve 0.31 su/çimento oranlı karışımla üretilen numunelerden daha iyi sonuçlar elde edilmiştir.
412
417

REFERENCES

References: 

1. Kuder, K.G., Shah S.P., Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 2010, 24(2), 181–186.
2. Lau, A., Anson, M., Effect of high temperatures on high performance steel fibre reinforced concrete. Cement and Concrete Research, 2006, 36(9), 1698–1707.
3. Yu, R. Spiesz, P., Brouwers, H.J.H, 2014 Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cement and Concrete Research, 56, 29–39.
4. Yu, R., Tang, P., Spiesz, P., Brouwers H.J.H., A study of multiple effects of nano-silica and hybrid fibres on the properties of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC) incorporating waste bottom ash (WBA). Construction and Building Materials, 2014, 60, 98-110.
5. Richard, P., Cheyrezy, M., Composition of reactive powder concretes. Cement and Concrete Research, 1995, 25(7), 1501-1511.
6. Graybeal, B.A., Characterization of the behavior of ultra-high performance concrete: University of Maryland; Ph.D. Thesis. 2005.
7. Tayeh, B.A., Abu Bakar, B.H., Megat Johari, M.A., Voo Y.L., Mechanical and permeability properties of the interface between normal concrete substrate and ultra-high performance fibre concrete overlay. Construction and Building Materials, 2012, 36, 538-548.
8. Aoude, H., Dagenais, F.P., Burrell, R.P., Saatçioğlu, M., Behavior of ultra-high performance fiber reinforced concrete columns under blast loading. International Journal of Impact Engineering, 2015, 80,185-202.
ÖZEL, ÖZ
417
9. Makita, T., Brühwiler, E., Tensile fatigue behaviour of Ultra-High Performance Fibre Reinforced Concrete combined with steel rebars (R-UHPFRC). International Journal of Fatigue, 2014, 59, 145-152.
10. Tayeh, B.A., Abu Bakar, B.H., Megat Johari, M.A., Voo Y.L., Utilization of Ultra-High Performance Fibre Concrete (UHPFC) for Rehabilitation a Review Procedia Engineering, 2013, 54, 525-538.
11. Kim D.J., Park, S.H., Ryu, G.S., Koh K.T., Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Construction and Building Materials, 2011, 25(11), 4144–4155.
12. Hassan, A.M.T., Jones, S.W., Mahmud G.H., Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete. Construction and Building Materials, 2012, 37, 874-882.
13. Yoo, D.Y., Kang, S.T., Yoon, Y.S., Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Construction and Building Materials, 2014, 64, 67–81.
14. Soroushian, P., Bayasi, Z., Fiber-Type Effects on the Performance of Steel Fiber Reinforced Concrete, ACI Materials Journal, 1991, 88(2), 129-134.
15. Hannawi, K., Bian, H., Prince-Agbodjan, W., Raghavan B., Effect of different types of fibers on the microstructure and the mechanical behavior of Ultra-High Performance Fiber-Reinforced Concretes. Composites Part B, 2015, 86, 214-220.
16. Yang, S.L., Millard, S.G., Soutsos, M.N., Barnett, S.J., Le, S.J., Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC). Construction and Building Materials, 2009, 23(6), 2291-2298.

Thank you for copying data from http://www.arastirmax.com