You are here

SİVAS İLİNDE YAPAY SİNİR AĞLARI İLE HAVA KALİTESİ MODELİNİN OLUŞTURULMASI ÜZERİNE BİR UYGULAMA

An Aplication of Neural Networks Applied on Whether Quality of Sivas

Journal Name:

Publication Year:

Abstract (2. Language): 
Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, and expanding commercial and industrial activities. Monitoring and forecasting of air quality parameters in the urban area are important due to health impact. Artificial intelligent techniques are successfully used in modelling of highly complex and non-linear phenomena. In this study, backpropagation neural network model has been proposed to estimate the impact of meteorological factors on SO2 pollution levels over an urban area. The model forecasts satisfactorily the trends in SO2 concentration levels, with performance 84–88%.
Abstract (Original Language): 
Hava kirliliği, yoğun araç trafiği, şehirsel ısınma ve artan ticari ve endüstriyel aktiviteler sebebiyle büyüyen bir problemdir. Sağlık açısından, kentsel bölgelerdeki hava kalitesi parametrelerini takip etmek ve tahmin etmek önemlidir. Yapay Sinir Ağları teknikleri karışık ve doğrusal olmayan modellerde çok başarılıdır. Bu çalışmada Geri Yayılmalı Yapay Sinir Ağları modeli kullanılarak, SO2 kirlilik seviyesi üzerindeki meteorolojik ve diğer kirlilik parametrelerin, kentsel bölgedeki etkisi incelenmiştir. Tahmin modelinin performansı 84-88 % değerleri arasında kullanılan modele göre başarı sağlanmıştır.
97-112

REFERENCES

References: 

1. Benvenuto, M., (2000), “ Neural Networks For Environmental Problems: Data
Quality Control andA ir Pollution Nowcasting” Global Nest Vol 2, No 3,
pp 281-292.
2. Bonzar, M., Lesjak, M., Mlakar, P., (1991) “A neural network based method for
short-termpredictions of ambient SO2 concentration in highly polluted
industrial areas of complex terrain”. Atmospheric Environment 27B(2),
221-230
3. Comrie,A.C., 1997. Comparing neural Networks and regression models for ozone
forecasting. Journal of the Air & Waste Managemnt Association 47, 653-
663
4. Efe, Ö., (2000), Yapay Sinir Ağları ve Uygulamaları, Boğaziçi Üniversitesi,
İstanbul.
5. Elmas, Ç., (2003), Yapay Sinir Ağları, Seçkin Yayınları, Ankara.
6. Fausett, L., (1994),Fundamentals of Neural Networks,Prentice Hall, New Jersey.
7. Graupe, D., (1997), Principles of Artificial Neural Networks, World Scientific
Publishing, Singapore.
8. Grivas, C., (2005), “Artifical neural network models for prediction of PM10 hourly
concentrations, in the Greater Area of Athens, Greece.” Atmospheric
Environment, Yayında.
9. Kay, J. W. and D.M. Titterington (1999), Statistics and Neural Networks, Oxford
University Pres. New York.
10. Neter, J., W. Wasserman and M. H. Kutner (1989), Applied Linear Regression
Models, IRWIN, Boston.
11. Öztemel, E., (2003), Yapay Sinir Ağları, Papatya yayınevi, İstanbul.
12. Patterson, D. W., (1996), Artificial Neural Networks, Prenctice Hall. New York.
13. Roa, R., Castro, J., Jorquera, H., Correa, J.R., Vesovic, V., (2005) “ Air- Pollution
modelling in urban ares: Correlating turbulent diffusion coefficients by
means of an artifical neural network approach” Atmospheric
Environment, Yayında.
14. Saral, A., 2000, Hava kirliliğinin yapay sinir ağları yöntemi ile modellenmesi ve
tahmini. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü,
Yayınlanmamış Doktora tezi.
15. Sarle, W. S. (1994), “Neural Networks and Statistical Models”, Proceedings of
the Nineteeth Annual SAS Users Group International Conference, Cary,
NC: SAS Institute.
16. Skapura, D. M. (1996), Building Neural Networks, Addison-Wesley, New York.
17. Wark, K., Warner, C.F., 1981, Air Pollution, its Origin and Control, Harper-
Collins, New York.
18. Warner, B., & Misra, M. (1996), “Understanding neural Networks as statistical
tools”. The American Statistician, 50, 284-293.
19. White, H. (1992), Artificial Neural Networks: Approximation and Learning
Theory,: Blackwell, Oxford, UK.
20. White, H., (1989), “Learning in Artificial Neural Networks: A Statistical
Perspective.”, Neural Computation, Vol. 1, No. 4, pp. 425—464.
21. Yurtoğlu, H., 2005, Yapay sinir ağları metodolojisi ile öngörü modellemesi: bazı
makroekonomik değişkenler için Türkiye örneği. Uzmanlık Tezi, Yayın
No: Dpt: 2683, Ankara.
22. Yi, J.,Prybutok, V.R., 1996. “A Neural network model foreacasting for prediction
of daily maximum ozone concentration in industrialized urban area”.
Environmental Pollution 92, 349-357.

Thank you for copying data from http://www.arastirmax.com