You are here

ÖLÇÜM HATALI LiNEER OLMAYAN MODELLER ve EN KÜÇÜK KARELER KESTİRİMİ

The Nonlinear Models with Measurement Error and Least Squares Estimation

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this study , it has been purposed to estimate parameters of nonlineer regression model Y=f(x;  ) with functional relationships, where Yt and Xt are both subject to measurement error , when we consider observe ( Yt , Xt ) for t t t t t z Y  y  e , X  x  u and t  1,2,...,n there for it is assumed that the error vector ( , )' t t t   e u has zero mean value and covariance error matrix  with normal distibuted , that is positive defined and nonsinguler . In cases whether covariance error matrix  known or unknown, we give least squares estimation about y f (x; ) t  that depend on diferantation .
Abstract (Original Language): 
Bu çalışmada, t t t t t z Y  y  e , X  x  u ve t  1,2,...,n için ( , ) t t Y X gözlemleri yapıldığında, ölçüm hatalı lineer olmayan Y=f(x; ) fonksiyonel ilişkisine sahip regresiyon modelinin parametreleri ( , )' t t t   e u hata vektörünün sıfır ortalamaya ve pozitif tanımlı singuler olmayan  kovaryans hata matrisi ile normal dağılıma sahip olduğunu kabul ederek  hata matrisinin bilindiği veya bilinmediği durumlarda y f (x; ) t  ’nin tamamen türeve dayalı en küçük kareler kestirimi incelenmiştir.
107-113

REFERENCES

References: 

1. Britt H.I. and Lucke R.H. The estimation of parameters in nonlinear implicit model.
Tecnometrics, (1973)15, 233-247.
2. Donald W. Marquart.; An algorithm for least squares setimation of nonlinear parameters.
J.Soc.Indust. Appl.Math. 11. 2- (1963)
3. Dolby. G.R.; Generalized least squares and Maksimum likelihood Estimation of Nonlinear
Fonctional Relationships, J.R. Stat. 25,157-162-(1972).
4. Fuller A.Wayne.; Estimating a Nonlinear errors in variables model with singular error
Covairance matrix. procedings of the business and Econometric statistics section. Amer
Statist. Assoc. (1975).
5. Fuller A.W. and Wolter. M.K.;Estimation of nonlinear errors in variables models. The.
6. Ann. of statistics. 10.2, 539-548. (1982-a)
7. Seber, G.A.F. and Wild, C.J.; Nonlinear Regression. John Wiley and Sons. Newyork.
(1988).
8. DEMİNG, W.E.; The application of least squares. Philosophical magazine series 7,11, 146-
158(1931

Thank you for copying data from http://www.arastirmax.com