You are here

TEPKİ YÜZEYLERİNE POLİNOMAL YAKLAŞIM

Polynomial Approach to the Response Surfaces

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In this Study the polynomial approximation is applied by Taylor expression to the equation of the expected res-ponse surface, the equation y   f ( x, ) is effected by one or more variables is expressed by the x vector that is Controlled by the experimenters or the reserches, and β is Unknown parameters Vector, and the Standart errors are under normal distribution assumption.    (o, 2 ) as a result, it is shown algebricaly that the equation is a general solution of a differantial equation in all cases. In the aplication KHURİ.A. and J.A.CORNEL- 1987 ( excersies 5-6 ) that is studied, Polynomal Models are applied with respect to data, and maximum product is attainaed at the stationary, point and Lack of fit is tested.
Abstract (Original Language): 
Bu çalışmada, deneyci veya araştırmacıların kontrolündeki x vektörü ile gösterilen bir veya daha fazla değişkenden etkilenen β bilinmeyen parametreler vektörü ve deneysel hataların sıfır ortalama σ2 varyansı ile normal dağıldığı varsayımı altında, y   f ( x, ) şeklinde yazılabilen gerçek tepki yüzeyinin uygun koşullar altında Taylor açılımından yararlanarak polinomal yaklaşımı ve her durumda bir diferansiyel denklemin genel çözümü olduğu cebirsel olarak gösterilmiştir. Çalışılan uygulamada, KHURI, A, and John A. CORNEL (1987) alıştırma 5- 6’daki verilen veriler kullanılmıştır. Verilerin durumuna göre polinomal modeller uyarlamış, durağan noktada maksimum ürün elde edilmiştir.
79-94

REFERENCES

References: 

1. BOX, G.E.P.; K.G. Wilson.: “On the Experimental Attainment of Optimum Conditions”
Journal of the Royal Statistical Society, (1951) B, 13, 1-45.
2. BOX, G.E.P.:) “Multi-Factor Designs of First Order”, Biometrika, (1952 39, 49-57.
3. BOX, G.E.P.; J.S. Hunter.: “A Conference Region for the Solution of a Set of Simultaneous
Equations with an Application to Experimental Design”, Biometrika, (1954) 41, 190-199.
4. BOX, G.E.P.; N.R. Draper.: “Empirical Model Building and Response Surfaces(1987)”, New
York: John Wiley.
5. Dennis K.J.L.N.; Wanshu Tu.: “Dual Response Surface Optimization”. Journal of Quality
Technology, (1995) 27, 34-39.6. Khuri, A.I.; J.A. Cornell.: “Response Surfaces: Designs and Analyses” (1987) Dekker, New
York
7. J.A. Cornell, D.C. Montgomery.: “Interaction Models as Alternatives to Low-Order
Polynomals”. Journal of Quality Technology, (1996) 28, 163-176.
8. Vining, G.G.; Myers, R.H.: “Combining Taquachi and Response Surface Properties A Dual
Response” Approach, J. of Quality Technology, (1990) 22, 38-45.

Thank you for copying data from http://www.arastirmax.com