You are here

TENSÖRİYEL DEĞİŞKENLER KULLANARAK LAGRANGE, HAMİLTON FORMALİZMLERİNİN ELEKTRİK DEVRELERİNE UYGULANMASI VE FARKLI DİFERANSİYEL DENKLEM SİSTEMLERİNİN ELDE EDİLMESİ: KOORDİNAT SİSTEMLERİNDEN BAĞIMSIZ YAKLAŞIM

APPLICATION OF LAGRANGE, HAMILTON FORMALISMS TO AN ELECTRICAL CIRCUIT USING TENSORIAL VARIABLES AND OBTAINING DIFFERENT FORMS OF SYSTEM OF DIFFERENTIAL EQUATIONS: COORDINATE FREE APPROACH

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
The study includes a research on applicability of the model, consisting of Lagrangian L and velocity proportional (Rayleigh) dissipation function D or shortly {L,D}-model both obtained using expanded Euler-Lagrange differential equation, on a trivial and pure electrical circuit example and as a result different systems of differential equation including base vectors in different spaces are obtained using different forms of Lagrangian and Hamiltonian.
Abstract (Original Language): 
Bu çalışmada, genişletilmiş Euler-Lagrange diferansiyel denklemi kullanarak elde edilen Lagrange fonksiyonu L ve hız orantılı (Rayleigh) kayıp fonksiyonu D‘den oluşan modelin, başka bir deyişle {L,D}-modelin, basit ve saf elektriksel bir düzenek örneği üzerine uygulanması incelenmekte ve baz vektörler de dahil olmak üzere farklı Lagrange ve Hamilton fonksiyonları ve sonuç olarak da farklı uzaylardaki ayrı hareket denklem sistemleri elde edilmektedir.
69-80

REFERENCES

References: 

Arnol’d V.I. (1989): “Mathematical Methods of Classical Mechanics”, 2nd Ed. Corr. 3rd,
Printing, Springer-Verlag, Berlin- Heidelberg- New York.
Maisser P., Steigenberger J. (1974): “Zugang Zur Theorie Elektromechanischer Systeme
Mittels Klassischer Mechanik”, Wiss. Zeitschrift der Technischen Hochschule Ilmenau,
Teil 1 20, 6.
Maisser P., Steigenberger J. (1976): “Zugang Zur Theorie Elektromechanischer Systeme
Mittels Klassischer Mechanik”, Wiss. Zeitschrift der Technischen Hochschule Ilmenau,
Teil 2 22, 3,
Goldstein H. (1980): “Classical Mechanics”, Addison-Wesley Pub. Comp. Reading,
Massachusetts.
Kron G. (1965): “Tensor Analysis of Networks”, Macdonald, London.
Süsse R., Ströhla T. (1996): “Calculation of Linear Electrical Networks with Metric
Coefficients and Covariant Impulses”, Journal of Electrical Engineering, vol. 47, No. 5,
VEDA, Bratislava.
Süsse R. (1998): “Some Aspects on the Theory of the Electrical Engineering on the Basis of
the Variational and Tensor-Calculus. 43”, International wissenschaftliches Kolloquim der
Technischen Universität Ilmenau, Band 3, Ilmenau1, s. 156-160.
Kwatny H.G., Massimo F.M., Bahar L.Y. (1982): “The Generalized Lagrange Formulation
for Nonlinear RLC Networks”, IEEE CAS-29, 220-233.
Szatkowski A. (1979): “Remark on “Explicit Topological Formulation of Lagrangian and
Hamiltonian Equations for Nonlinear Networks”, IEEE CAS-26, 358-360.
Suesse R., Civelek C. (2003): “Analysis of Engineering Systems by Means of Lagrange and
Hamilton Formalisms Depending on Contravariant, Covariant Tensorial Variables”,
Forschung im Ingenieurwesen-Engineering Research 67.

Thank you for copying data from http://www.arastirmax.com