You are here

ÜSTEL DÜZLEŞTİRME YÖNTEMLERİNDE BAŞLANGIÇ DEĞERİNİN ÖNEMİ

IMPORTANCE OF INITIAL VALUE IN EXPONENTIAL SMOOTHING METHODS

Journal Name:

Publication Year:

DOI: 
http://dx.doi.org/10.16953/deusbed.12175
Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Exponential smoothing is a very popular forecasting method for a wide range of time series data. There are two problems with exponential smoothing. First one is choosing smoothing constant. And second one is how to get initial value. In this paper importance of initial value and effects of it on the forecast is investigated and a cross table is constructed to help forecasters.
Abstract (Original Language): 
Üstel düzleştirme çeşitli zaman serisi verileri için yaygın olarak kullanılan popüler bir tahmin yöntemidir. Üstel düzleştirme ile ilgili iki önemli problem mevcuttur. Birincisi, düzleştirme sabitinin değerine karar vermek. İkincisi de başlangıç değerini belirlemektir. Bu çalışmada başlangıç değerinin önemi ve tahmin üzerindeki etkisi araştırılmış ve araştırmacılara yardımcı olmak amacıyla bir çapraz tablo oluşturulmuştur.
291
302

REFERENCES

References: 

Abraham, B. and Ledolter, J. (1983). Statistical methods for forecasting.
New York: John Wiley and Sons.
Armstrong, J. S. and Collopy, F. (1992). Error measures for generalizing
about forecasting methods: Empirical comparisons. International Journal of
Forecasting, 8 (1): 69-80.
Armstrong, J. S. and Collopy, F. (1993). Causal forces: Structuring
knowledge for time series extrapolation. Journal of Forecasting, 12 (2): 103-115.
Brown, R. G. (1959). Statistical Smoothing for inventory control. New
York: McGraw-Hill.
Brown, R. G. (1964). Smoothing, forecasting and prediction of discrete
time series. NJ: Prentice-Hall.
Clemen, R. T. (1989). Combining forecasts: A review and annotated
bibliography. International Journal of Forecasting, 5 (4): 559-583.
Cohen, G. D. (1966). Bayesian adjustment of sales forecasts in multi-item
inventory control system. Journal of Industrial Engineering, 17: 474-479.
Fildes, R., Hibon, M., Makridakis, S. and Meade, N. (1998). Generalising
about univariate forecasting methods: Further empirical evidence. International
Journal of Forecasting, 14 (3): 339-358.
Gardner, Jr. E. S. (1985). Exponential smoothing: The state of the art.
Journal of Forecasting, 4 (1): 1-28.
Gardner, Jr. E. S. (2006). Exponential smoothing: The state of the art - Part
II. International Journal of Forecasting, 22 (4): 637-666.
Gass, S. I. and Harris, C. M. (Eds.) (2000). Encyclopedia of operations
research and management science. Dordrecht: Kluwer Academic Publishers.
Geurts, M. D. and Kelly, J. P. (1986). Forecasting retail sales using
alternative models. International Journal of Forecasting, 2 (3): 261-272.Hill, G. and Fildes, R. (1984). The accuracy of extrapolation methods: An
automatic Box–Jenkins package SIFT. Journal of Forecasting, 3 (3): 319-323.
Holt, C. C. (1957). Forecasting seasonals and trends by exponentially
weighted moving averages, ONR Memorandum. Pitssburgh, PA: Carnegie Institute
of Technology.
Holt, C. C, Modigliani, F., Muth, J. F. and Simon, H. (1969). Planning
production, inventories, and the work force. NJ: Prentice Hall.
Johnson, L. A. and Montgomery, D. C. (1974). Operations research in
production planning, scheduling, and inventory control. New York: Wiley.
Koehler, A. B. and Murphree, E. S. (1988). A comparison of results from
state space forecasting with forecasts from the Makridakis competition.
International Journal of Forecasting, 4 (1): 45-55.
Ledolter, J. and Abraham, B. (1984). Some comments on the initialization
of exponential smoothing. Journal of Forecasting, 3 (1): 79-84.
Lusk, E. J. and Neves, J. S. (1984). A comparative ARIMA analysis of the
111 series of the Makridakis competition. Journal of Forecasting, 3 (3): 329-332.
Makridakis, S., Hibon, M. and Moser, C. (1979). Accuracy of forecasting:
An empirical investigation. Journal of the Royal Statistical Society: Series A
(General), 142 (2): 97-145.
Makridakis, S., Andersen A., Carbone R., Fildes, R., Hibon, M.,
Lewandowski, R., Newton, J., Parzen, E. and Winkler, R. (1982). The Accuracy of
extrapolation (time series) methods: Results of a forecasting competition. Journal
of Forecasting, 1 (2): 111-153.
Pegels, C. C. (1969). Exponential forecasting: Some new variations.
Management Science. 15 (5): 311-315.
Roberts, S. A. (1982). A general class of Holt–Winters type forecasting
models. Management Science, 28 (7): 808-820.
Taylor, S. G. (1981). Initialization of exponential smoothing forecasts.
AIIE Transactions, 13 (3): 199-205.
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving
averages. Management Science. 6 (3): 324-342.
Xie, M., Hong, G. Y. and Wohlin, C. (1997) A study of the exponential
smoothing technique in software reliability growth prediction. Quality and
Reliability Engineering International, 13 (6): 347-353.

Thank you for copying data from http://www.arastirmax.com