You are here

SINIF ÖĞRETMENİ ADAYLARININ BİLİNMEYEN DEĞERİ BULMA PROBLEMLERİNİ ÇÖZERKEN KULLANDIKLARI STRATEJİLERİN İNCELENMESİ

INVESTIGATION OF PRE-SERVICE ELEMENTARY TEACHERS’ STRATEGIES IN SOLVING MISSING VALUE PROBLEMS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The purpose of the study was to investigate pre-service elementary teachers’ solution strategies in solving missing value problems, which is a type of proportion problems. Data were collected from the pre-service teachers in the spring semester of 2015-2016. Pre-service teachers were junior students enrolled in elementary teaching program at a public university in Turkey. Pre-service teachers were wanted to solve four missing value problems. The results of the study revealed that pre-service teachers had difficulty in solving the problems by using two different strategies. Moreover, pre-service teachers mostly used formal strategies (e.g., crossmultiplication) in which rules and properties of algebra were used, instead of informal strategies (e.g., unit rate, factor of change) highlighting multiplicative relationships. Pre-service teachers used cross-multiplication, which was a formal strategy, as a leading strategy to solve these problems. Furthermore, it was found that preservice teachers’ solution strategies might change based on problem context.
Abstract (Original Language): 
Bu araştırmanın amacı, sınıf öğretmeni adaylarının oran ve orantı problemlerinin bir çeşidi olan bilinmeyen değeri bulma problemlerini çözerken kullandıkları çözüm stratejilerini incelemektir. Çalışmanın verileri, 2015- 2016 bahar döneminde öğretmen adaylarından toplanmıştır. Öğretmen adayları, Türkiye’de bir devlet üniversitesinde sınıf öğretmeni yetiştirme programına devam eden 34 üçüncü sınıf öğrencisidir. Adaylardan, verilen dört bilinmeyen değer problemini çözmeleri istenmiştir. Araştırmada, öğretmen adaylarının bilinmeyen değeri bulma problemlerini iki farklı stratejiyle çözmekte zorlandıkları görülmüştür. Bunun yanında, öğretmen adaylarının çoğunlukla verilen problemleri çözerken çarpımsal ilişkilerin kullanıldığı informal stratejileri (birim oran, değişim çarpanı gibi) değil, cebirsel kuralların kullanıldığı formal stratejileri (içler dışlar çarpımı gibi) kullandıkları görülmüştür. Öğretmen adaylarının en sık kullandıkları stratejinin ise formal bir strateji olan “içler dışlar çarpımı” stratejisi olduğu belirlenmiştir. Ayrıca, öğretmen adaylarının kullandıkları çözüm stratejilerinin, problemin içeriğine bağlı olarak değişebildiği tespit edilmiştir.
175
181

REFERENCES

References: 

Allain, A., (2000). Development of An Instrument to measure proportional reasoning among fast-track middle
school students. Published Master of Science Dissertation, University of North Carolina State, Raleigh.
Eğitim ve Öğretim Araştırmaları Dergisi
Journal of Research in Education and Teaching
Haziran 2016 Cilt:5 Özel Sayı Makale No: 21 ISSN: 2146-9199
180
Atabaş, (2014). An examination of fifth and sixth grade students’ proportional reasoning. Unpublished master’s
thesis, Boğaziçi University, İstanbul.
Baroody, A. J., & Coslick, R. T. (1998). Fostering children's mathematical power: An investigative approach to K-
8 mathematics instruction. New York: Lawrence Erlbaum.
Baykul, Y., (2002). İlköğretimde matematik öğretimi: 6.-8. sınıflar için. Pegem A. Yayıncılık, ISBN 975-6802-60-X,
Ankara, 352s.
Ben-Chaim, D., Fey, J.T., Fitzgerald, W. M., Benedetto, C. and Miller, J. (1998). Proportional reasoning among
7th grade students with different curricular experiences. Educational Studies in Mathematics. 36. pp. 247-273.
Ben-Chaim, D., Keret, Y., & Ilany, B-S. (2012). Ratio and proportion: Research and teaching in mathematics
teachers’ education (pre- and in-service mathematics teachers of elementary and middle school classes).
Rotterdam, The Netherlands: Sense Publishers.
Cramer, K. & Post, T. (1993). Connecting research to teaching proportional reasoning. Mathematics
Teacher, 86(5), 404-407.
Cramer, K., Post, T., & Currier, S. (1993). Learning and Teaching Ratio and Proportion: Research Implications. In
D. Owens (Ed.), Research Ideas For the Classroom (pp. 159-178). NY: Macmillan Publishing Company.
Heller, P., Ahlgren, A., Post, T., Behr, M., & Lesh, R. (1989).Proportional Reasoning: The Effect of Two Context
Variables, Rate Type and Problem Setting. Journal for Research in Science Teaching, 26(1), 205-220.
Heller, P., Post, T., Behr, M., & Lesh, R. (1990). Qualitative and numerical reasoning about fractions and rates by
seventh and eighth grade students. Journal for Research in Mathematics Education, 21(5), 388-402.
Hillen, A. F. (2005). Examining preservice secondary mathematics teachers’ ability to reason proportionally prior
to and upon completion of a practice-based mathematics methods course focused on proportional reasoning.
Unpublished doctoral thesis, University of Pittsburgh, Johnstown.
Kaput, J. J., & West, M. M. (1994). Missing-value proportional reasoning problems: Factors affecting informal
reasoning patterns. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning
of mathematics (pp. 235-287). Albany: State University of New York Press.
Karplus, R., Pulos, S., & Stage, E. K. (1983). Early adolescents' proportional reasoning on 'rate' problems.
Educational Studies in Mathematics, 14(3), 219-233.
Kayhan, M., Duatepe, A., Akkuş-Çıkla, O., (2004). İlköğretim ikinci kademe öğrencilerinin orantısal akıl yürütme
gerektiren sorularda kullandıkları çözüm stratejileri. VI. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, 9-11
Eylül, İstanbul.
Lamon, S. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research.
In K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629–667).
Charlotte, NC: Information Age Publishing.
Lamon, S. (2012). Teaching fractions and ratios for understanding: Essential content knowledge and
instructional strategies for teachers (3rd ed.). Mahwah, NJ: Erlbaum.
Lesh, R., Post, T., & Behr, M. (1987). Dienes revisited: Multiple embodiments in computer environments. In I.
Wirsup & R. Streit (Eds.), Development in School Mathematics Education Around the World (pp. 647-680).
Reston, VA: National Council of Teachers of Mathematics.
Eğitim ve Öğretim Araştırmaları Dergisi
Journal of Research in Education and Teaching
Haziran 2016 Cilt:5 Özel Sayı Makale No: 21 ISSN: 2146-9199
181
Lesh, R., Post, T., & Behr, M. (1988). Proportional reasoning. In J. Hiebert & M. Behr (Eds.), Number concepts
and operations in the middle grades (pp. 93-118). Reston, VA: National Council of Teachers of Mathematics.
Post, T., Behr, M., & Lesh, R. (1988). Proportionality and the development of pre-algebra understandings. In A.
Coxford & A. Shulte (Eds.) The Idea of Algebra K-12: Yearbook National Council of Teachers of Mathematics (pp.
78-90). Reston, VA: NCTM.
Slovin, H. (2000). Moving to proportional reasoning. Mathematics Teaching in the Middle School, 6(1), 58-60.
Singh, P. (2000). Understanding the concepts of proportion and ratio constructed by two grade six students.
Educational Studies in Mathematics, 43, 271-292.

Thank you for copying data from http://www.arastirmax.com