[1] O. H. HALD: Discontinuous inverse eigenvalue problems, Comm. Pure Appl. Math. 37 (1984), 539-577.
[2] A. N. TiKHONov, A. A. SAMARSKII: Equation of mathematical physics, Dover Books on Physics and Chemistry, Dover New York, (1990).
[3] A. N. TiKHONov: On the uniqueness of the solution of the electric conductivity problem, Dokl. Akad. Nauk SSSR, 69 (1949), 797-800.
[4] M. L. RASULOV: Methods of Contour Integration, Series in Applied Mathematics and Mechanics, North-Holland Amsterdam 3 (1967).
[5] D. G. SHEPELSKY: The inverse problem of reconstruction of the medium's conductivity in a class ofdiscontinuous and increasing functions, Advances in Soviet Mathematics
19 (1994), 209-231.
[6] R. S. ANDERSSEN: The effect of discontinuous in density and shear velocity on the asymptotic overtone structure oftorional eigenfrequences ofthe Earth, Geophysical Journal Royal Astronomical Society 50 (1997), 303-309.
[7] F. R. LAPWOOD, T. USAMI: Free oscillation of the Earth, Cambridge University Press:Cambridge (1981).
[8] G. FREILING, V. YURKO: Inverse Sturm-Liouville problems and their applications,
Nova Science Publishers, INC. (2008).
[9] B. M. LEVITAN, M.G. GASYMOV: Determination of differential operator by two spectra, Uspekhi mat. Nauk, 19 (1964) 3-63 (in Russian).
[10] V. A. MARCHENKO: Strum-Liouville Operators and Their Applications, Trans. from the Russian by A. Iacob, Birkhauser Verlag, Basel, Boston, Stuttgard, (1986).
[11] B. M. LEVITAN: Inverse Sturm-Liouville problems, Translated from the Russian by O. E mov. VNU Science Press BV Utrecht (1987).
[12] B. M. LEVITAN, I. S. SARGSJAN: Sturm- Liouville and Dirac Operators, Kluwer Aca¬demic Publishers Group Dordrecht (1991).
[13] A. M. AKHTYAMOV: Theory of identification of boundary conditions and its applications, Fizmatlit Moscow (2009) (in Russian).
[14] V. A. SADOVNICHY, Y. T. SULTANAEV, A. M. AKHTYAMOV: Inverse Sturm-Liouville Problems with Nonseparated Boundary Conditions, MSU, Moscow. (2009).
[15] V. A. YURKO: Inverse spectral problems and their applications, Saratov (2001) (in Russian).
REFERENCES 543
[16] N. J. GULIYEV: Inverse eigenvalue for Sturm-Liouville equations with spectral parame¬ter linearly contained in one ofthe boundary conditions, Inverse Problems, 21(2005),
1315-1330.
[17] E. N. AKHMEDOVA: On representation of solution of Sturm-Liouville equation with discontinuous coefficients, Proceedings of IMM of NAS of Azerbaijan XVI XXIV
(2002), 5-9.
[18] E. N. AKHMEDOVA, I. M. HUSEYNOV: On solution of the inverse Sturm-Liouville problem with discontinuous coefficient, Proceedings of IMM of NAS of Azerbaijan, (2007),
33-44.
[19] D. KARAHAN, KH. R. MAMEDOV: Uniqueness of the solution of the inverse problem for one class ofSturm-Liouville operator, Proceedings of IMM of NAS of Azerbaijan, 40 Special Issue (2014), 233-244.
[20] KH. R. MAMEDOV, D. KARAHAN: On an inverse spectral problem for Sturm Liouville operator with discontinuous coefficient, Ufimsk. Mat. Zh.,7 3 (2015), 125-137.
[21] KH. R. MAMEDOV, D. KARAHAN: On the main equation of inverse Sturm-Liouville operator with discontinuous coefficient, arXiv: 1508.06626 (2015).
[22] KH. R. MAMEDOV, F. A. CETINKAYA: An uniqueness theorem for a Sturm-Liouville equation with spectral parameter in boundary conditions, Appl. Math. Inf. Sci. 2 9
(2015), 981-988.
[23] KH. R. MAMEDOV, F. A. CETINKAYA: Inverse problem for a class Sturm-Liouville operator with spectral parameter in boundary condition, Boundary Value Problems (2013), 2013:183, doi:10.1186/1687-2772013-183
Thank you for copying data from http://www.arastirmax.com